

3.1
 FORCE, INERTIA AND MOMENTUM

3.1 SHORT QUESTIONS

Q. 1 Define dynamics. (K.B)

Ans:

Definition:

CThe brangin of mechatics that qears with tie study of motion of an object and the cause of is mp ionis called dy famis:

Example:

> Hory the moon effect the ocean.

Car on a banked road.
Define force? Write its formula and unit. (K.B+U.B+A.B)
(GRW 2013, LHR 2017)

Definition:

"A force that moves or tends to move, stops or tends to stop the motion of a body.
The force can also change the direction of motion of a body".

Formula:

$$
\overline{\mathrm{F}}=\mathrm{ma}
$$

Quantity:
A force is a vector quantity.

Unit:

S.I unit of force is newton(N)

$$
1 \mathrm{~N}=1 \mathrm{~kg} \times 1 \mathrm{~ms}^{-2}
$$

Definition of newton:

"One newton is the force that produces an acceleration of $1 \mathrm{~ms}^{-2}$ in a body of mass 1 kg ."
Examples:

- We can open the door either by pushing or pulling the door.
- A man pushes the cart. The push may move the cart or change the direction of its motion or may stop the moving cart.
- A batsman changes the direction of a moving ball by pushing it with his bat.

Q. 3 Define mineria. Exlan it withexanes. (K.B+A.B)
 (LHR 2014, 2015, GRW 2017)
 Ans:
 INERTIA

Definition:

GInertia of a body is its property due to which it resists any change in its state of rest or of motion".

Introduction:

Galileo observed that it is easy to move or to stop light objects than heavier ones. Heavier objects are difficult to move or if moving then difficult to stop. Later on Newton
concluded that everybody resists to the change in its state of rest or of uniform motion in a straight line. He called this property of matter as inertia. He related the inertia of a brom with its mass; greater is the mass of a body greater is its inertia

Dependence:

Dependence:
It depends on the mass of the bodv. Greater he mas of the body greater will be the inertia. Therefore, we can ay that ais is the ciect uneasure of ine tija.

Examplas:

- Take a glas cover it pith a niece of cardboard. Place a coin on the cardboard. Nouf flick he carthorizontally with a jerk of your finger. The coin does not move v ith he cad dboard due to inertia and falls in to the glass.

- Cut a strip of paper. Place it on the table. Stack a few coins at its on end. Pull out the paper strip under the coins with a jerk. We will succeed in pulling out the paper strip under the stacked coin without letting them to fall due to inertia.

Figure: Coins Stacked Over
Remain Undisturbed on Pulling the Paper Strip
Quickly
Q. 4 When a bus takes a sharp turn why do passengers fall in ontware direcieme (K.B+U.B)

Ans:
Q. 5 What is momentum? (K.B)

MOMENTUM

Definition:

"Momentum of a body is the qeantity of motion inporsesses cue to its reass and Melocity". Formula:
The momenfum ' \mathbf{P} ' of a body is given ty he pidduct of its mass m and velocity \mathbf{v}. Thus $\mathrm{P}=\mathrm{m} \times$
Quantiy:
Morientun is ve tor quantity.
1net
SI unit of momentum is $\mathbf{~ k g ~ m s}^{\mathbf{- 1}}$ or Ns.

Dependence:

Momentum or quantity of the motion of a body depends on two quantities.

- Mass of the body
- Velocity of the body
Q. 6 What are the effects of a force. (C.B)

Ans: Force do not only affect motion. If two or more forces acts on something, they will change its shape or volume (or both). The effect is slight with hard objects, but can be very noticeable with flexible bodies.

3.1 MULTIPLE CHOICE QUESTIONS

1. The direct measure of inertia is: (K.B)
(A) Mass
(B) Energy
(C) Momentum
(D) All of above
2. The characteristic of a body due to which it tends to retain its state of rest or of uniform motion is known as: (K.B)
(A) Weight
(B) Force
(C) Inertia
(D) Momentum
3. The agency which changes or tends to change the state of rest or of uniform motion of a body: (K.B)
(A) Weight
(B) Force
(C) Inertia
(D) Momentum
4. SI unit of force is: (K.B)
(A) Kilogram
(C) newton
(B) Dynes
5. $\quad 1 \mathrm{~N}=$? $\left(\boldsymbol{U}_{-\boldsymbol{-}} \boldsymbol{B}\right)$
(A) kgms^{-2}
(C) $\mathrm{kgm}^{2} \mathrm{~s}^{-1}$

(D) Pound

Quantity motion in a bedy is knovn as. (K b);
(A) Mas
(B) Momentum
(C) Velocity
(D) Acceleration
7. Product of mas. and velocity is known as: (K.B)

1 A Ficme (B) Speed
(d) Momentum
(D) Acceleration
$\mathbf{K g m s}^{-1}=$? (U.B)
(A) N
(B) J
(C) Ns
(D) W

3.2

NEWTON'S LAWS OF MOTION

LONG QUESTIONS

 LHR 2021)
Ans:

Introd
First law of inotiph deals with bodies winch are either at rest or moving with uniform speed in a ra ght like. Il mems no net force acts on them.

Ftament

New ons rirst Law of Motion states that:
${ }^{*}$ A body continues in its state of rest or of uniform motion in a straight line provided no net force acts on it".

Explanation For Rest:

Newton's first law of motion deals with bodies which are either at rest or moving with uniform speed in straight line. According to first law of motion, a body at rest remains at rest provided no net force acts on it. This part of the law is true as we observe that objects do not move by themselves unless someone moves them.

Example:

A book lying on a table remains at rest as long as no net force acts on it.

Explanation For Motion:

Similarly, a moving object does not stop moving by itself. A ball rolled on a rough ground stops earlier than that rolled on smooth ground. It is because rough surface offer greater friction. If there would be no force to oppose the motion of the body would never stop.

Example:

When its engine of a car moving with uniform velocity is turned off it stops gradually because a net force of friction is acting in the opposite direction causes to stop it.

Law of Inertia:

Since Newton's first law of motion deals with the inertial property of matter, therefore, Newton's first law of motion is also known as law of inertia.

Example:

Passengers standing in a bus fall forward when its driver applies brakes suddenly. It is because the upper parts of the bodies tend to continue their motion, lower farts pf bodies are in contact with the bus stop with it. Hence, they fall forwird. Similarly, whena moving bus takes a sharp turn, passengers fal in the orat direction. It 5 du: $\uparrow 5$ inertia that they want to continue fimir motian in a straght line and thu farl sutwards.
3.2 Q. 2 State and Explain Newton'seronc av of intien. (K B $+\mathcal{U} . B+\mathbb{A}$)
(GRW 2011, LHR 2012, 2013)
Ans:

NED CONS SEOND LAW OF MOTION

Introduction:

Tover on' Second Law of Motion deals with the situation where a net force acts on the body. Seunent:
Newton's Second Law of Motion states that:
"When a net force acts on a body, it produces acceleration in the body in the direction of the net force. The magnitude of this acceleration is directly proportional to the net force acting on the body and inversely proportional to its mass."

Mathematical Form:

If the force ' \mathbf{F} ' is acting on the body of mass ' \mathbf{m} ' then we can write this in fic mathematica' form as,

$$
\begin{equation*}
\mathrm{a} \propto \mathrm{~F} \tag{1}
\end{equation*}
$$

and
From retiction

$$
\mathrm{a} \propto \frac{1}{\mathrm{~m}}
$$

3.2 Q. 4 State and Explain Newton's Third law of motion. (K.B+A.B+U.B) (LHR 2011, GRW 2013) Ans:

NEWTON'S THIRD LAW OF MOTION

Introduction:

Newton's Third Law of Motion deals with the situation where action and reaction forces act on the bodies.

Statement:

Newton's Third Law of Motion states that:
"To every action there is always an equal but opposite reaction".

Explanation:

According to this law, action is always accompanied by a reactiomoree and oo forces must always be equal and opposite Note that action and reastion foces aen on different bodies due to this reason they do yot cance eat stien.

- Action Force: The alpplied freserva tody is called action.
- Reaction Force: The espor si fforce tp action slealled reecion force

Newto third lave motion deals with tie reaction of a body when a force acts on it. Let a beav A xet a ferce or anothe. boay B, the body B reacts against this force and exerts a force body A. The iorce exerted by body A on B is the action force whereas tine firce ederted hy b on A is called the reaction force.

- Consider a book lying on a table as shown in figure. The weight of the book is acting on the table in the downward direction. This is the action. The reaction of the table acts on the book in the upward direction.

- Fare an air-filled balloon. When the balloon is set free, the air inside it rushes out and the balloon moves forward. In this example, the action is by the balloon That pushes the air out of it when set free. The reaction of the air which escapes out from the balloon acts on the balloon. It is due to this reaction of the escaping air that moves the balloon forward.

Q. 5 Rockets and Jets: Interesting Information

Rockets use the action-reaction principle. A rocket engine gets thrust in one direction by pushing out a huge mass of gas very quickly in the opposite direction. The gas is produced by burning fuel and oxygen. These are either stored as cold liquids, or the fuel may be stored in chemical compounds which have been compressed into solid pellets.
How can a rocket accelerate through space if there is nothing for it to push against? It does have something to push against - the huge mass of gas from its burning fuel and oxygen. Fuel and oxygen make up over 90% of the mass of a fully loaded rocket.
Jet engines also get thrust by pushing out a huge mas of gas. But the gas is mostly air that has been dawn in at the front:

A jeten eine the big fal a the front pushes out a huge mass of air. However, some of the : iir doesi 't cone straight out. It is compressed and used to burn fuel in a combustion chaober. As the hot exhaust gas expands, it rushes out of the engine pushing round a turbine as it goes. The spinning turbine drives the fan and the compressor.

Rocket Engine:

A rocket engine. In the combustion chamber, a huge mas of hot has expand and rushes out of the nozzle. The gas is produced by burning fuel and oxygen.

3.2 SHORT QUESTIONS

Q. 1 State Law of Inertia. (K.B)

OR What is the Law of Inertia?
Ans: Given on Page \# 94
Q. 2 Why Newton's First law símotien is aro cal ed le wof ipertia? K B)

Ans: Given on Page \# 94
Q. 3 State Nenton's Secona iav of not on.(k. L)
(LHR 2012, GRW 2013)
Ans: Given on Fage \#o1
Q. 4 What is the unt of fore? Define it. (K.B)
(GRW 2013, LHR 2017)
Ans: Givel or Page fi 9.5
25 Dedincthe working of jet engine. (Conceptual Base)
Ane: Viven on Page \# 97
Q.6 Define the working of rocket engine. (Conceptual Base)

Ans: Given on Page \# 97
Q. 7 Define net Force. (K.B)

Ans:

NET FORCE

Definition:

"The resultant of all the forces acting on the body is called Net Force."
$\mathrm{F}_{\text {net }}$ is $400 \mathrm{~N}, \mathrm{up} \quad \mathrm{F}_{\text {net }}$ is 200 N , down $\quad \mathrm{F}_{\text {net }}$ is 20 N , left
Figure: \quad Concept of Net Force
Q. $8 \quad$ State Newton's Third law of motion. (K.B)
(LHR 2017)
Ans: Given on Page \# 96
Q. 9 If a moving body has no acceleration; does it mean that no force is acting on it?

Ans: \quad ACCELERATION AND NET FORCE
According to Newton's second law of motion, we have
$\mathrm{F}=\mathrm{ma}$
When acceleration $=\mathrm{a}=0$, we get

$$
\begin{array}{ll}
& F=m \times 0 \\
\text { So, } & F=0
\end{array}
$$

Q. 10 Action and reaction are always equal and opposite then why they do T1 eanel eac 1 othe.en (U.B)

OR Action and reaction are alwoys equal and appritt ther 10 docs a br dy move? (Ex. 3.9)

According to this law action it al ways accempaned by a reaction force and the two forces must ampys or equal and opppsite. Ne te that action and reaction forces act on different bodies cue to this rea or the not cancel each other due to which the body will move.
Q. 11 Is if possinie fre a body to move without force?

Ans: On Eat, unpowered vehicles soon come to rest because of friction. But with on friction, gravity, or other external force on it, a moving object will keep moving for ever - at a steady speed in a straight line. It doesn't need a force to keep it moving.
This idea is summed up a in a law first put forward by Sir Isaac Newton in 1687:
Q. 12 Stretch out your palm and hold a book on it. (K.B+U.B)
(Quick Quiz PTB Pg. \# 64)

1. How much force you need to prevent the book from falling?

Ans:
PREVENTING BOOK FROM FALLINC
Force equal to the weight of the book is ne ded to perent the book irn folins
2. Which is action?

Ans:
Weightof the bool. is action in thes cas
10 N
3. Is there any reacfign? If yes, then wat is its direction?

Ans:
REACTION
Pes there is areattion offered by hand. The direction of reaction is opposite to the weight.
EXAMPLE 3.1 (U. B+A,B)
Find the acceleration that is produced by a 20 N force in a mass of 8 kg .

Solution:

Given Data:

Force acting on body $=\mathrm{F}=20 \mathrm{~N}$
Mass of the body $=\mathrm{m}=8 \mathrm{~kg}$

To Find:

Acceleration $=\mathrm{a}=$?

Calculations:

We know according to $2^{\text {nd }}$ Law of Motion
$\mathrm{F}=\mathrm{ma}$
$\mathrm{a}=\mathrm{F} / \mathrm{m}$
Putting values

$$
\mathrm{a}=20 \mathrm{~N} / 8 \mathrm{~kg}
$$

$$
\mathrm{a}=2.5 \mathrm{~ms}^{-2}
$$

Result:
Hence the acceleration produced will be $2.5 \mathrm{~ms}^{-2}$.

EXAMPLE 3.2 (U.B+A.B)

A force acting on a body of mass 5 kg produces an acceleration of $10 \mathrm{~ms}^{-2}$. What acceleration the same force will produce in a body of mass 8 kg ?

Solution:
Given Data:
Mass of First Body $=m_{1}=5 \mathrm{~kg}$
Mass of Second Body $=m_{2}=8 \mathrm{~kg}$
Acceleration in First body = $\mathrm{a}_{1}=10 \mathrm{~ms}^{-2}$

To Find:

Acceleration in Second body $=$ $\mathrm{a}_{2}=$?

Calculations:
As the same force is acting on both
bodies so

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{a}_{1}=\mathrm{m}_{2} \mathrm{a}_{2} \\
& \mathrm{~m}_{1} \mathrm{a}_{1} / \mathrm{m}_{2}=\mathrm{a}_{2} \\
& \mathrm{a}_{2}=\mathrm{m}_{1} \mathrm{a}_{1} / \mathrm{m}_{2}
\end{aligned}
$$

Putting values

$$
\begin{aligned}
& \mathrm{a}_{2}=(5)(10) / 8 \\
& \mathrm{a}_{2}=6.25 \mathrm{~m}
\end{aligned}
$$

Result
Hence, the acceler ation produced in ccond bodry will be $6.25 \mathrm{~ms}^{-2}$.

Acy list of inass 40 kg exerts a force of 200 N to move his bicycle with an acceleration of 3 ns. How much is the force of friction between the road and the tyres?

Solution:

Given Data:

Mass of cyclist $=\mathrm{m}=40 \mathrm{~kg}$ Force exerted $=\mathrm{F}=200 \mathrm{~N}$

Putting values

$$
\begin{aligned}
& \mathrm{F}=(40)(3) \\
& \mathrm{F}=120 \mathrm{~N}
\end{aligned}
$$

We know

$$
\text { Acceleration }=\mathrm{a}=3 \mathrm{~ms}^{-2}
$$

To Find:
Force of friction $=\mathrm{f}=$?

Calculations:

Before finding force of frictitn we have to find net force first

Net force $=$ Applied Force - Force of friction
$120 \mathrm{~N}=200 \mathrm{n}-\mathrm{f}$
$\mathrm{f}=200 \mathrm{~N}-20 \mathrm{~N}$
$\mathrm{f}=\mathrm{s}=\mathrm{N}$
Resut:
Hence, the force of friction between the road and the tyres will be 80 N .

5月 MULTIPLE CHOICE QUESTIONS

Laws of motion were presented by: (K.B)
(A) Einstein
(B) Newton
(C) Galileo
(D) Archimedes
2. Isaac Newton described the laws of motion in his famous book: (K.B)
(A) Qanoon-ul-Masoodi
(B) Principia Mathematica
(C) Kitab-ul-Astralab
(D) Al-Manazir
3. The laws of motion established the relationship between motion and: (K.B)
(A) Force
(B) Torque
(C) Acceleration
(D) Momentum
4. First law of motion is also known as law of: (K.B)
(A) Torque
(B) Acceleration
(C) Inertia
(D) None of these
5. Law of inertia is actually the which law of motion? (K.B)
(A) First
(B) Second
(C) Third
(D) Fourth
6. When a net force is applied on the body, what is produced in the body? (K.B)
(A) Weight
(B) Acceleration
(C) Energy
(D) None of the above
7. The acceleration produced in a moving body is always in the direction of applied: (K.B)
(A) Velocity
(B) Force
(C) Speed
(D) Momentum
8. If mass of the body is doubled while keeping the force constant, then acceleration will be: ($\boldsymbol{U} . \boldsymbol{B}$)
(A) One half
(B) Doubled
(C) One fourth
(D) Four times
9. If force applied on the body is doubled while keening the nass constal then acceleration will be: ($\boldsymbol{U} . \boldsymbol{B}$)
(A) One half
(C) One fourth
10. SI unit of force is: (K D)
(3) Loubied
(A) Ki oorram
(D) Dynes
(C) Nervter
(D) Pound
11. When a force of β rever is applied on a body of mass 2 kg , then the acceleration produced vill
A) $6 \mathrm{Cr}_{1}^{-2}$
(B) $4 \mathrm{~ms}^{-2}$
(C) $0.4 \mathrm{~ms}^{-2}$
(D) $160 \mathrm{~ms}^{-2}$
12. $1 \mathrm{~N}=$? $\left(K_{-2} B\right)$
(B) kgms^{-1}
(A) kgms^{-2}
(D) $\mathrm{kg}^{2} \mathrm{~ms}^{-2}$
(C) $\mathrm{kgm}^{2} \mathrm{~s}^{-1}$
(D) $\mathrm{kg} \mathrm{ms}^{2}$
(GRW 2014)
(GRW 2014)
13. Action and reaction are equal in magnitude but opposite in direction is known as: (K.B)
(A) First law of motion
(B) Second law of motion
(C) Third law of motion
(D) Fourth law of motion
14. Walking on road is an example of which law of motion? (K. B)
(A) First
(B) Zुecorla
(C) Third
(I) Fourth
15. When a block is lying on a smocth sa fice is weshis dalanced by: (K.B)
(A) Miss
(B) Momentum
(C) Inere.
(D) Normal Reaction
16. The weigh tot boc y mass 10 kg on earth will: (U.B)
(A) 10 N
(B) 1 N
(C)100N
(D) 1000 N

Always acting towards the center of the earth: (K.B)
(A) Mass of the body
(B) Force of the body
(C) Velocity of the body
(D) Weight of the body
18. Quantity of matter in a body: (K.B)
(A) Mass
(B) Force
(C) Velocity
(D) Weight
19. The Force with which earth attracts a body towards its centre is known as: (K.B)
(A) Mass
(B) Force
(C) Weight
(D) Inertia
20. The characteristic of a body which determines the magnitude of acceleration produced when a certain force acts upon it: (K.B)
(A) Mass
(B) Force
(C) Inertia
(D) Weight
21. Mass of the body is measured by: (K.B)
(A) Free Fall Apparatus
(B) Physical balance
(C) Spring balance
(D) All of above
22. Weight of the body is measured by: (K.B)
(A) Free Fall Apparatus
(B) Physical balance
(C) Spring balance
(D) All of above
23. Unit of weight is: (K.B)
(A) kg
(B) ms^{-1}
(C) Nm
(D) N
24. Remains same everywhere: (K.B)
(A) Weight
(B) Acceleration
(C) Velocity
(D) Mass
25. Does not remain same everywhere: (K.B)
(A) Weight
(B) Inertia
(C) Mass
(D) All of bove

26. The value of weight of a body of constrit mass depends on: (K.B)
(A) Inertia
(C) Forse
(E) Morhentun
27. Mass is 2 quantify (K.P)
(A) $\mathrm{Sca}{ }^{\dagger} \mathrm{ar}$
(C) Derived
(B) Vector

Weisht is s quantity: (K.B)
(a) scalar
(B) Vector
(C) Unit less
(D) Negative

TENSION AND ACCELERATION IN STRING

LONG QUESTIONS

Q. 1 Find Acceleration in bodies and tension ip the stiong when beth he bodits Miove vertically using Atwood mgchinc.(K.Bㅅ.B+U.B) (I.HR z013, GRW 2015)
Ans:

Suppose $t \times 0$ bodies f and B in in inses \mathbf{m}_{1} and \mathbf{m}_{2} respectively are attached to two ends of an inertensibe sti ihg which phsses over a frictionless pulley. Let $\mathbf{m}_{\mathbf{1}}$ is greater than \mathbf{m}_{2}, then the brdy A will move downward and the body \mathbf{B} will move upward. The bedy A being hed vier must be moving downwards with some acceleration. Let this forelerator be a. Since the string is inextensible therefore the body \mathbf{B} attached to the aher end of the string moves up with the same acceleration as as the pulley is frictionless, hence tension will be the same throughout the string. Let the tension in the string be \mathbf{T}.

Forces Acting on Body A:

There are two forces acting on body A

- Weight of the body $\mathbf{w}_{\mathbf{1}}=\mathbf{m}_{1} \mathbf{g}$ vertically downward
- Tension in the string \mathbf{T} vertically upward

As the body \mathbf{A} is moving downward, It means $\mathbf{w}_{\mathbf{1}}=\mathbf{m}_{\mathbf{1}} \mathbf{g}$ is greater in magnitude so the resultant force acting on body \mathbf{A} is downward due to which acceleration a is produced in it.

Net force acting on body $A=\mathbf{m}_{1} \mathbf{g}-\mathbf{T}$

$$
\mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{~g}-\mathrm{T}
$$

According to Newton's second law of motion:

Forces acting on body B:

There are two forces actin Cn bod.

- Weight of the bod $\quad w_{2}=n_{2}$ verti air downervard

Tensionm the t ing Tertically appward
As the Dody \mathbf{E} is noveng upward, it means \mathbf{T} force is greater in magnitude so the resulan force actiag on lody \mathbf{B} is upward due to which acceleration a is produced in it.

Net force acting on body $B=T-\mathbf{m}_{2} g$

$$
\mathrm{F}_{2}=\mathrm{T}-\mathrm{m}_{2} \mathrm{~g}
$$

According to Newton's second law of motion:

$$
\begin{equation*}
\mathrm{m}_{2} \mathrm{a}=\mathrm{T}-\mathrm{m}_{2} \mathrm{~g} \tag{2}
\end{equation*}
$$

Calculation of Acceleration:

In order to find acceleration in bodies we will add equation (1) and equation (2)

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{a}+\mathrm{m}_{2} \mathrm{a}=\mathrm{m}_{1} \mathrm{~g}-\mathrm{T}+\mathrm{T}-\mathrm{m}_{2} \mathrm{~g} \\
& \mathrm{~m}_{1} \mathrm{a}+\mathrm{m}_{2} \mathrm{a}=\mathrm{m}_{1} \mathrm{~g}-\mathrm{m} \mathrm{~g}
\end{aligned}
$$

Calculetion of Tenion:

In or ler to find er sion in bodies we will divide equation (2) by equation (1)

$$
\begin{gathered}
\frac{T-m_{2} g}{m_{1} g-T}=\frac{m_{2} a}{m_{1} a} \\
\frac{T-m_{2} g}{m_{1} g-T}=\frac{m_{2}}{m_{1}} \\
m_{1}\left(T-m_{2} g\right)=m_{2}\left(m_{1} g-T\right) \\
m_{1} T-m_{1} m_{2} g=m_{1} m_{2} g-m_{2} T \\
m_{1} T+m_{2} T=m_{1} m_{2} g+m_{1} m_{2} g \\
\left(m_{1}+m_{2}\right) T=2 m_{1} m_{2} g \\
T=\frac{\mathbf{2 m}_{1} \mathbf{m}_{2}}{\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{2}} \mathbf{g}
\end{gathered}
$$

Atwood Machine:

The above arrangements are also known as Atwood machine. Atwood machine is an arrangement of two objects of unequal masses. Both the objects are attached to the ends of a string. The string passes over frictionless pulley. This arrangement is sometimes used to find the acceleration due to gravity by equation as

$$
g=\frac{m_{1}+m_{2}}{m_{1}-m_{2}} \mathbf{a}
$$

Result:

By using Atwood machine we can find following expressions.

Q. 2 Find Acceleration in bodies and tension in the string, when one body moves vertically and other moves horizontally. (K.B+A.B+U.B)
OR Describe motion of two bodies attached to the ends of a finis, that passes bveca frictionless pulley such that one body moves ertcaly and he other roves on smooth horizontal surface.
Ans:

TERSICNSSTRNGCESE2

Consider wo bodies A and \mathbf{B} haver masses \boldsymbol{m}_{1} and $\mathbf{m}_{\mathbf{2}}$ respectively are attached to an inextenfitle string which passes out the pulley as shown in figure. The body A moves vertically down va with: an acceleration a since the string is inextensible therefore the body \mathbf{B} moves on the horizontal smooth surface towards the pulley with the same a.ccieration a. As the pulley is frictionless, hence tension \mathbf{T} will be the same throughout the string.

Figure: Tension in string When One Body Moves Vertically and Other Moves Horizontally

Forces Acting on Body A:

There are two forces acting on body A

- Weight of the body $\mathbf{w}_{\mathbf{1}}=\mathbf{m}_{1} \mathbf{g}$ vertically downward
- Tension in the string \mathbf{T} vertically upward

As the body \mathbf{A} is moving downward, It means $\mathbf{w}_{\mathbf{1}}=\mathbf{m}_{\mathbf{1}} \mathbf{g}$ is greater in magnitude so the resultant force acting on body \mathbf{A} is downward due to which acceleration \mathbf{a} is produced in it.

Net force acting on body $A=\mathbf{m}_{1} \mathbf{g}-T$

$$
\mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{~g}-\mathrm{T}
$$

According to Newton's second law of motion:

$$
\begin{equation*}
\mathrm{m}_{1} \mathrm{a}=\mathrm{m}_{1} \mathrm{~g}-\mathrm{T} \tag{1}
\end{equation*}
$$

Forces Acting on body B-

 There are three forces acting on $b b c y, 3$$\qquad$
 C There are three forces acting on $b b d y$ - Weigh of the bod dy $\mathbf{w}_{2}=n_{2 g} g$ vertically downward Tens. on ir the string \mathbf{T} along the string pulling the body in the horizontal direction over the smooth surface.
As the body \mathbf{B} is not moving vertically, therefore, vertical forces cancel each other and their resultant is zero. The only remaining force \mathbf{T} due to which the body \mathbf{B} is moving in the horizontal direction with acceleration ' \mathbf{a} '.
Hence according to Newton's second law of motion,

$$
\begin{equation*}
\mathbf{m}_{2} \mathbf{a}=\mathbf{T} \tag{2}
\end{equation*}
$$

Calculation of Acceleration:

In order to find acceleration in bodies we will add equation (1) And eqration (2)

$$
\left(m_{1}+r_{1}\right) a=m \&
$$

We ge egration (3) as.

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{a}+\mathrm{m}_{2} \mathrm{a}=\mathrm{m}_{1} \mathrm{~g}-\sqrt{1}+\mathrm{T} \\
& \mathrm{~m}_{1}+\mathrm{m}_{2} \mathrm{a}=\mathrm{g}_{1} \mathrm{~g}
\end{aligned}
$$

$$
y=\frac{-m_{1} g}{m_{1}+m_{2}}
$$

2atenanom of Tension:
in order to find the value of T, put the value of a in equation (2), we have

$$
\begin{align*}
& \mathrm{T}=\mathrm{m}_{2} \times \frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \\
& \mathrm{~T}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \ldots \ldots \tag{4}
\end{align*}
$$

Result:

By using above arrangements we can find following expressions:

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \\
& \mathrm{~T}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
\end{aligned}
$$

SHORT QUESTIONS

Q. 1 Define Tension in the string. (K.B)

Ans:

TENSION IN THE STRING

Definition:

"The force which is exerted by the string on the body when it is subjected to a pull is called the tension in the string."

Formula:

It is a reaction force of the weight and it is usually denoted by T.

Unit:
Tension is a force so its S.I ur iv is newton (N). Quantity:
Tensior is: deaived and vector quantity.
Diretion:
Fric wejsht acts downwards while tension T in the string is acting upwards at the block.
It the object is at rest, the magnitude of tension is equal to weight as shown in the figure:

Q. 2 What is Atwood Machine? (K.B+A.B)

Ans:

Atwood Machine:

The above arrangements are known as Atwood machine. Atwood machine is an arrangement of two objects of unequal masses. Both the objects are attached to the ends of a string. The string passes over frictionless pulley. This arrangement is sometimes used to find the acceleration due to gravity by equation as:

$$
\mathrm{g}=\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{1}-\mathrm{m}_{2}} \mathrm{a}
$$

Q. 3 What will be the tension in a rope that is pulled from its ends by two opposite forces 100 N each? (U.B)
(Ex. 3.8)
Ans:

TENSION IN THE STRING

The tension in a rope that is pulled from its ends by two opposite forces 100 N each will be 100 N .
Q. 4 A body of mass 4 kg has been hanged vertically with a string what will be tension in the string? (U.B+A.B)

Solution:

Given Data:
Mass of the body $=4 \mathrm{mg}$
Gravitational Acceeration/=
To Fin
Tension in the strive $=T=$?

EXAMPLE 3.4

Two masses 5.2 kg and 4.8 kg are attached to the ends of ar axten ible sting which passes over a frictionless pulley. Find the acceleration in the system and the tension in the string when both the masses arenowng edicady. (U.B+A.D)

Solution:

Giver nta:

Mass of fi st boov $=1 n_{1}=52 \mathrm{~kg}$
Mats of second hody $=\mathrm{m}_{2}=4.8 \mathrm{~kg}$
Siavitational acceleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$

To Find:

Acceleration of the bodies $=\mathrm{a}=$?
Tension in the string $=\mathrm{T}=$?

Calculations:

When the two bodies are moving vertically then acceleration of the bodies is as,

$$
\mathrm{a}=\frac{\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

By putting the values in above equation, we have,

Accelset on of the budies $=0.4 \mathrm{~ms}^{-2}$
When the two bodies are moving vertically then tension in the string is as,

$$
\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

By putting the values in above equation, we have,

$$
\mathrm{T}=\frac{2 \times 5.2 \times 4.8}{5.2+4.8} \times 10 \Rightarrow \mathrm{~T}=50 \mathrm{~N}
$$

Tension in the string $=50 \mathrm{~N}$

Result:

Hence, the acceleration of the bodies will be $0.4 \mathrm{~ms}^{-2}$ and tension in the string will be 50 N .

$$
\begin{aligned}
& \mathrm{a}=\frac{(5.2-4.8)}{(5.2+4.8)} \times 10 \\
& \mathrm{a}=\left(\frac{0.4}{10}\right) \times 10 \\
& \mathrm{a}=0.4 \mathrm{~ms}^{-2}
\end{aligned}
$$

EXAMPLE 3.5

Two masses 4 kg and 6 kg are attached to the ends of an inextaniols strind wh passes over a frictionless pullev such that mass 6 kg is mpving over a rictiontess horizontal surface and the mass 4 kg is moving ernaily dovisard Find the acceleration in the systerand the ension in he stripg. $L B \vdash A . B$
Solution:

Given (12 a:

Mass ofine thelenoving verncaly $-m_{1}$ $=4 \mathrm{~kg}$
Thass of the biond moving along table $=$ $\mathrm{Ir}_{2}=6 \stackrel{\mathrm{R}}{\mathrm{g}}$
Gravitational acceleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$

To Find:

Acceleration of the bodies $=\mathrm{a}=$?
Tension in the string $=\mathrm{T}=$?
Calculations:
When one body is moving vertically and other body is moving horizontally then acceleration of the bodies is as,

$$
\mathrm{a}=\frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

By putting the values in above equation, we have
$a=\frac{4}{4+6} \times 10$
$a=4 \mathrm{~ms}^{-2}$

Acceleration of the bodies $=4 \mathrm{~ms}^{-2}$
When the two bodies are moving vertically then tension in the string is as,

$$
\mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~g}
$$

By putting the values in above equation, we have

$$
\mathrm{T}=\frac{4 \times 6}{4+6} \times 10 \Rightarrow \mathrm{~T}=24 \mathrm{~N}
$$

Tension in the string $=\mathbf{2 4 N}$
Result:
Hence, the acceleration in bodies will be $4 \mathrm{~ms}^{-2}$ and tension in the string will be 24 N .

MULTIPLE CHOICE QUESTIONS

1. How much is the tension produced when one body moves vertically and the other moves horizontally as compared to the tension produced when both bodies move vertically: (U.B)
(A) Half
(B) One fourth
(C) Double
(D) Four times
2. A block of 4 kg is supported by a string. The tension in the string is: (A.B)
(A) 20 N
(B) 40 N
(C) 4 N
(D) 0 r
3. When a block is hanging with the help of a repe hen wigh of the hody is balanced by: (K.B)
(A) Aceelration
(B) mertia
(C) Disedaernt
(D) Tension
4. There are 10 any casession motion of the body hanging with the help of rope in texi look? (K. B)
(A)
(B) 2
(2) 3
(D) 4
5. Atwood machine is used to find value of? (A.B)
(A) Density
(B) Stress
(C) Gravitational acceleration
(D) Gravitational constant

FORCE AND MOMENTUM
 LAW OF GONSERVATION OF MOMENTIMM

LONG QUEETIONP

Q. 1 How you can prove that ate of charge in nornentun of a body is equal to the applied force? (K.B+U.B $-\boldsymbol{A} \cdot \boldsymbol{B}$
OR Derive the relation between
Ans:

Relation:

"Ratio ochange of Monctum is equal to applied Force"

Mothematicaty.

W

$$
\frac{\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}}{\mathrm{t}}=\mathrm{F}
$$

Proof:

Suppose a force ' \mathbf{F} ' acts on a body of mass ' \mathbf{m} ' moving with initial velocity ' \mathbf{v} ' ${ }_{\mathbf{i}}$ which produces an acceleration \mathbf{a} in it. This changes the velocity of body to ' $\mathbf{v}_{\mathbf{f}}$ ' after time \mathbf{t}. If \boldsymbol{P}_{i} and $\boldsymbol{P}_{\boldsymbol{f}}$ be the initial momentum and final momentum of the body related to initial and final velocities, then,

Momentum of the body having velocity $\mathrm{v}_{\mathrm{i}}=P_{i}=\mathrm{mv}_{\mathrm{i}}$
Momentum of the body having velocity $\mathrm{v}_{\mathrm{f}}=P_{f}=\mathrm{mv}_{\mathrm{f}}$
Change in momentum $=$ final momentum - initial momentum

$$
\begin{gathered}
P_{f}-P_{i}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}} \\
P_{f}-P_{i}=\mathrm{m}\left(\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right)
\end{gathered}
$$

Dividing both sides by " t "
Rate of change in momentum $=\frac{P_{f}-P_{i}}{t}=\frac{m v_{f}-m v_{i}}{t}$

$$
\begin{array}{ll}
& =m \frac{v_{f}-v_{i}}{m} \\
\text { Since } \quad a=\frac{\left(v_{f}-v_{i}\right)}{t}
\end{array}
$$

$$
\text { Hence, } \quad \frac{P_{f}-P_{i}}{t}=m a
$$

$$
\text { We know, } \mathrm{F}=\mathrm{ma}
$$

$$
\frac{P_{f}-P_{i}}{t}=F
$$

SI unit of momentum defined by above equation is newtorecond (ass whichiohe same as kgms^{-1}.
Conclusion:
Fate of change of monen tun of a body is equal to the applied force on it and he tire tion of change of in mentum is in the direction of the force.
Newton's Sec ind an of ision in Term of Momentum:
Froir at ore concusion we can state Newton's Second law of motion in terms of rorenomas

Scatement:

"When a force acts on a body, it produces acceleration in the body and will be equal to the rate of change of momentum of the body."
Q. 2 State and explain Law of conservation of Momentum. (U.B+A.B+K.B)

Ans:

LAW OF CONSERVATION OF MOMENTUM

Introduction:

Momentum of a system depends upen mas and yelocity. As
System:
A systemis. groun ofinteracting bodien with in ceitain boundaries.
Isolated_ysten:
An isolated sys em s a ercup of interacting bodies on which no external force is acting. If nounpala nced or force acts on a system then its momentum remains constant thus, rroneraum oían isolated system remains constant.
Scaiement:
According to Law of Conservation of Momentum:
"The momentum of an isolated system of two or more than two interacting bodies remains constant"

Example:

Consider the example of an air-filled balloon. In this case, balloon and the air inside it form a system. Before releasing the balloon, the system was at rest and hence the initial momentum of the system was zero. As soon as the balloon is set free, air escapes out of it with some velocity. The air coming out of it possesses momentum. To conserve momentum, balloon moves in the direction opposite to the air coming out of it.

Mathematical Explanation:

$\overline{\text { Consider an isolated system }}$ of two spheres of masses $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$ as shown figure. They are moving in a straight line with initial velocities \mathbf{u}_{1} and \mathbf{u}_{2} respectively. As shown in the figure:

Momentum Before Collision:

Initial momentum of mass $m_{1}=m_{1} u_{1}$
Initial momentum of mass $m_{2}=m_{2} u_{2}$
Total momentum of the system before collision $=m_{1} u_{1}+m_{2} u_{2}$
Suppose \mathbf{u}_{1} is greater than \mathbf{u}_{2}. Sphere of mass \mathbf{m}_{1} approaches the phere of nass $\mathbf{m}_{\text {. }}$ as they move. After sometimes mass m_{1} hits \mathbf{n}_{2} with Spine Iirce. Accordiis.g to Qewton's third law of motion, $\mathbf{m}_{\mathbf{2}}$ everts an quat and opposite reacticn for ee on m1. Let their velocities become $\mathbf{v}_{\mathbf{1}}$ and \mathbf{v}, resreat vel: a ter collii ir n.

Momentum After Collision:
Final momentum of mass $m_{1}=m_{1} \mathrm{v}_{1}$
Final momentum of mass $m_{2}=m_{2} v_{2}$
Total momentum of the systen after collision $=n_{1} \mathrm{~V},+n\left(2 V_{2}\right.$
According to law of conservation of thomettur:

Resglt:
$\left[\begin{array}{l}\text { Total initial mo nantum o } \\ \text { thesysiem be ore cellivign }\end{array}\right]\left[\begin{array}{l}\text { ditalem monnentun of the } \\ \text { syster collision }\end{array}\right]$ $\mathrm{I}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$

Write a note on applications of Law of Conservation of Momentum. (A.B)

 Ans: APPLICATIONS OF LAW OF CONSERVATION OF MOMENTUMLaw of Conservation of Momentum is an important law and has vast applications. This law is applicable universally i.e. true not only for bigger bodies but also for atoms and molecules.
Some applications are given below

- To Find Velocity of The Gun:

Consider a system of gun and a bullet. Before firing, the velocity of the bullet as well as that of gun was zero. Therefore, the total momentum of both the objects was also zero. We can write it as,

Total momentum of gun and bullet before firing $=0$
When the gun is fired, bullet shoots out of the gun and acquire momentum. To conserve momentum the gun recoils backward. Now according to the law of conservation of momentum, the total momentum of the gun and bullet will also be zero after the gun is fired. Let \mathbf{m} be the mass of the bullet and \mathbf{v} be its velocity on firing the gun; \mathbf{M} be the mass of the gun and \mathbf{V} be the velocity with which it recoils. Thus the total momentum of the gun is fired will be:
Total momentum of the gun and bullet after the gun is fired $=\mathrm{MV}+\mathrm{mv}$
According to the law of conservation of momentum:
$\left[\begin{array}{l}\text { Total momentum of the gun and the } \\ \text { bullet after the gun is fired }\end{array}\right]=\left[\begin{array}{l}\text { Total momentum of the gun and the } \\ \text { bullet before the gun is fired }\end{array}\right]$
OR

$$
\begin{aligned}
& M V+m v=0 \\
& M V=-m v
\end{aligned}
$$

Hence
The above equation gives the verocity O of the gur Here negative sign indicates that velocitygn is opposite to the velucity or berlet i.e. the gun recoils. That is why the shoulder prested durieg firng wince mass of the gun is much larger than the bullet, therefore, the repoll is inuch smaller than the velocity of the bullet.

Io Und ercand Working of Rockets or Jet Engines:

Rocle or Jet engine also works on this same principle. In both of them, hot gases are produced due to the burning of fuel. These gases rush out with large momentum. Therefore the rockets or jet engines gain an equal and opposite momentum. This enables them to move with very high velocities.

SHORT QUESTIONS

Q. 1 Momentum of a body depends on which factors? (K.B)

Ans: Given on Page \# 93
Q. 2 Define an isolated system? (K.B)

Ans: Given on Page \# 110
Q. 3 State Law f Conservation of Monentun. (k.B)

Ans: Given (2ntiage 共ito
Q. 4 Why is the lan o conservation of momentum important? (K.B)

Lav of conservation of momentum is very important in our daily life. It has vast appiicatons and is applicable universally on bigger bodies as well as on atoms and molecules. It helps us to understand:

- Working of a system of gun and bullet,
- Working of rockets and jet engines etc.
Q. 5 When a gun is fired, it recoils. Why? (K.B)

Ans:
GUN RECOILS
Total momentum of the gun and the bullet is zero before the firing. When gun is fired, bullet moves in forward direction and attains momentum as a result the gun recoils to conserve momentum according to Law of Conservation of Momentum.
Q. 6 Write relation between Force and Momentum. (K.B)

Ans: \quad FORCE AND MOMENTUM

Relation:

"Rate of change of Momentum is equal to applied Force"
Mathematically:

$$
\frac{P_{f}-P_{i}}{t}=F
$$

Q. 7 State Newton's Second Law of Motion in terms of Momentum. (K.B)

Ans: \quad NEWTON'S SECOND LAW OF MOTION IN TERMS OF MOMENTUM
We can state Newton's Second law of motion in terms of momentum as

Statement:

"When a net force acts on a body, it produces acceleration in the body and the net force will be equal to the rate of change of momentum of the body."
Mathematically:

$\underline{P_{f}-P_{i}}=F$

Q. 8 Prove that $\mathrm{kgms}^{-1}=\mathrm{Ns}($ K.B)

Ans:
As we know that
"Rate of change of Momer tu n isperual to appled lerret"

$\mathrm{m} \Delta \mathrm{v}=\mathrm{F} \times \mathrm{t}$
Dutung units, $\mathrm{kgms}^{-1}=\mathrm{Ns}$
Hence Proved
Q. 9 Why are fragile objects packed in Styrofoam rings or polythene sheets with air cavities in it? (K.B)
Ans:

IMPACT TIME

Fragile objects such as glass wares etc. a packed with suitable raterial osver as Styrofoam rings, balls, polythene thets with a racks ctc Ar rnclosed in the cavities of these materials makes them flewipte incoit Dusing any mishat, they increase the impact timeon fragile sbiects. An increase in impact ime lowers the rate of change of momentwn andinence Tese the the thet of iorce. This lowers the possible damage due to an accicent.
Q. 10 What is rold of cr monle zones in front and rare part of vehicles? (K.B)
(Useful Information Pg. \# 68)
ROLE OF CRUMPLE ZONES

In an accident at high speed, the impact force is very large due to the extremely short stopping time. For safety purposes, vehicles have rigid cages for passengers with crumple zones at their front and rear ends. During an accident, crumple zones collapse. This increases the impact time by providing extra time for crumpling. Impact of force is highly reduced and saves the passengers from severe injuries.
Q. 11 Write role of seat belts. (K.B)
(Useful Information Pg. \# 69, Ex. 3.18)

ROLE OF SEAT BELTS

In case of an accident, a person not wearing seatbelt will continue moving until stopped suddenly by something before him. This something may be a windscreen, another passenger or back of the seat in front of him/her. Seatbelts are useful in two ways:

- They provide an external force to a person wearing seatbelt.
- The additional time is required for stretching seat belts. This prolongs the stopping time for momentum to change and reduces the effect of collision.
Q. 12 What observation of Newton led to the concept of momentum second or motion? (C.B)
Ans: Newton noted that, when the same force octed for the sato time on dffient Gasses, a large mass would gain loss velocity than a malier one bu the change in 'mass \times velocity' was the same in every fase. It vas this bose raton thatled to the concept of momenth and thesecond aw.
Q. 13 What isin pulse?

Ans: the quar tity 'force \times tirner is called impulses.
Resu tan force $>$: time $=$ change in momentum Resultint Iorce \times time $=$ impulse

EXAMPLE 3.6

A body of mass 5 kg is moving with a velocity of $10 \mathrm{~ms}^{-1}$. Find the force requre: ©o stop it in 2 seconds. (U.B+A.B)
Solution:
Given Data:
Mass of the body $=m_{1}=5$
Initial reid city of teroody: $=v_{1}=10 \mathrm{~ns}$
Final vencity of tie body $=v_{f}=0 \mathrm{~m}^{-1}$
Time to ston the body $=t=2 \mathrm{~s}$
To Eind
Foicequired to stop $=\mathrm{F}=$?
Calculations:
We know that,

$$
F=m\left(\frac{v_{f}-v_{i}}{t}\right)
$$

Putting varuestin tormula

$$
\mathrm{F}=\left(\frac{-50}{2}\right)
$$

$$
\mathrm{F}=-25 \mathrm{~N}
$$

Result:

Hence, the force required to stop the body will be 25 N .

EXAMPLE 3.7

A bullet of mass 20 g is fired from a gun with a muzzle velocity $100 \mathrm{~ms}^{-1}$. Find the recoil of the gun if its mass is 5 kg . (U.B+A.B)

Solution:

Given Data:

Mass of the bullet $=\mathrm{m}=20 \mathrm{~g}=0.02 \mathrm{~kg}$
Velocity of the bullet $=\mathrm{v}=100 \mathrm{~ms}^{-1}$
Mass of the Gun $=5 \mathrm{~kg}$

To Find:

Recoil of the Gun $=\mathrm{V}=$?

Calculations:

As we know that

$$
\mathrm{V}=-\frac{\mathrm{m}}{\mathrm{M}} \mathrm{v}
$$

By putting the values, we have

$$
\begin{aligned}
& \mathrm{V}=-\frac{0.2 \mathrm{~kg}(100) \mathrm{ms}^{-1}}{5 \mathrm{~kg}} \\
& \mathrm{~V}=-0.4 \mathrm{~ms}^{-1}
\end{aligned}
$$

Result:

Hence, negative sign shows that gun recoils with velocity of $4 \mathrm{~ms}^{-1}$.

MULTPLE CHOIC QUFSNo

1. Rate of change of momentam is emual to. (K, B)
(A) Force
(C) Accreation
(B) Velocity
(D) Impulse
2. Diretion af the rate of change of momentum is in the direction of: (K.B)
(A) deeceration
(B) Momentum
(C) Velocity
(D) Force
3. Which of the following is the unit of momentum? (K.B)
(A) Nm
(B) kgms^{-1}
(C) Ns
(D) Both b and c
4. Momentum of a moving body depends unon its: (NLT
(A) Mass
(C) We:cylt
(B) Velocity
(D) Eeth a \& b
5. Motion or he ockt an examplot: (A.B)
(A) First la o Inction
(B) Law of conservation of Momentum
(C) Law of conservation of Energy
(D) Weigh
6. Crumple zones save us from injuries during accidents by: (K.B)
(A) Decreasing impact time
(B) Increasing impact time
(C) Keeping impact time constant
(D) None

3.3
 FRICTION
 LONG QUESTIONS

3.3 Q.1 Define and explain friction? Write cause of friction and derive its mathematical formula. (K.B+U.B+A.B)

Ans:

FRICTION

Definition:

"The force which opposes the motion of moving objects is called friction."

Factors Effecting the Friction:

Friction is a force that comes into action as soon as a body is pushed or pulled over a surface. In case of solids, the force of friction between two bodies depends upon many factors such as nature of the two surfaces in contact and the pressing force between them.

Example:

Rub your palm over different surfaces such as table, carpet, polished marble surface, brick, etc. You will find smoother is the surface, easier it is to move over the surface. Moreover, harder you press your palm over the surface, more difficult would it be move.

Cause of Friction:

No surface is perfectly smooth. A-Sprface thar appears srioptl has jits und bumps that can be seen under microscope. A7 masrifieg vew at a surfice in or tact shows the gaps and contarts between them Whe contact paints between the two surfaces form a sort of cold weds. Theseco d welds resisp the surfaces from sliding over each other. Adding weight pver the upper bloch increases the force pressing the surfaces together which increase the resistance. Thus greater is the pressing force greater will be the friction between sliding surfaces.

Fricton is qqa th the applied force that tends to move a body at rest. This friction betwer(1) sufaces at rest is called the static friction. It increases with the applied force. Friction can also be increased to a certain maximum value. It does not increase beyond this. This maximum value of friction is known as force of limiting friction (Fs). It depends on the normal reaction (pressing force) between the two surfaces in contact. The ratio between the force of limiting friction $\mathbf{F s}$ and the normal reaction \mathbf{R} is constant. This constant is called the coefficient of friction and is represented by $\boldsymbol{\mu}$.

$$
\begin{aligned}
& \mu=\frac{F_{s}}{R} \\
& F_{s}=\mu R
\end{aligned}
$$

If m is the mass of the block, then for horizontal surface;

$$
\begin{aligned}
& \mathrm{R}=\mathrm{mg} \\
& \mathrm{~F}_{\mathrm{s}}=\mu \mathrm{mg}
\end{aligned}
$$

Here " $\boldsymbol{\mu}$ " is constant of proportionality and it is called coefficient of Limiting Friction. Coefficient of Friction:
As we know,

$$
F_{s}=\mu R
$$

And $\quad \mu=\frac{F_{s}}{R}$
Hence we can define coefficient of friction as:
"The ratio between Limiting Friction $\left(\mathbf{F}_{\mathbf{s}}\right)$ and Normal Reaction (\mathbf{R}) of the surface is constant, this constant is called coefficient of Friction".

Unit:

As it is ratio between two similar quantities so it has no unit.

Value:

Its value depends upon nature of the material
3.3 Q. 2 Define two kinds of a friction. Concepturibrse)

Ans: When the block below is rulled genty, friction stcps it no ir g. As the force is increased, the friction rises until the block is apol tc s.ip. This is the starting or static friction. With a greater dounwar free pn the block the sotuc triction is higher. Once the block starts to slide the frictiondr.pp: n oving ar uynamic friction is less than static friction.
Pviamir friction heets materials up. When something is moved against the force of fricribros energy of motion (called kinetic energy) is changed into thermal energy (1eat). Brakes and other machinery must be designed so that they get rid of this thermal energy. Otherwise their moving parts may become so hot that they seize up.

3.3 Q. 3 Explein the rolling friction. (K.B)

Ans:

KOUNTG FRICTION

Definition:

"Fr, ctiontween surfaces being rolled on each other by using wheel, tyre or ball beatins is called rolling friction."
Wheel as Greatest Invention:
The most important invention in the history of mankind was a wheel. By using wheel we can reduce friction because wheel converts sliding friction into rolling friction.

Less Friction in Rolling Bodies:

When axle of a wheel is pushed, the force of friction between the wheel and the ground at the point of contact provides the reaction force. The reaction force acts at the contact points of the wheel in a direction opposite to the direction to the applied force. Rolling friction is extremely less than sliding friction due to less in contact surface area and less cold-weld regions between surfaces. The wheel rolls without rupturing the cold welds. The fact that rolling friction is less than sliding friction is applied in ball bearing to reduce losses due to friction.

Necessary Road Grip:

The wheel would not roll on pushing it if there would be no friction between the wheel and the ground that is provided by threads of the tyres. Thus, friction is desirable for wheels to roll over a surface. It is dangerous to drive on a wet road because the friction between the road and the tyres is very small. This increases the chance of slipping the tyres from the road. The threading of tyres is designed to increp frictior Pits, threading improves road grip and make it safar to drive eveno wet road.

Sliding Friction in Brakes:

A cyclist applies brakes to stop hisiser bicycle As soon as brakes are applied, the wheels stop rolling and begin to stide-oyer the ruad. since slidiag frictio: is much greater than rolling(friction the cy cle stcps very du.ckly.
3.3 Q. 4 Explain te 11 triction in braning and explain the Skidding. (K.B)

Ans:
BRAKING AND SKIDDING
Thad whels of a moving vehicle have velocity components:

- Motion of wheel along the road
- Rotation of wheels about their axis

To move a vehicle on the road as well as to stop a moving vehicle requires friction between its tyres and the road.

Example:

If the road is slippery or the tyres are worn out then the tyres instead of yoling, slip $\sqrt{2}$ the road. The vehicle will not move if the wheels start slipping at the same point on the slippery road. Thus for the wheels to roll, the force of miction (gripr irg Urcluosetween the tyres and the road must be eno(g), that revents the fiom slipping.
Similarly, to stop a car quick y. a/rge fo cr of frict on bet veen tre yres and the road is needed. Bit here is alimit to this force of friction that tyres can provide.
Skiddirs.
If the biake a e applied or stongly, the wheels of the car will lock up (stop turning) and tone car vill kiddue to its large momentum. It will lose its directional control that may vesulf: in an accident. In order to reduce the chance of skidding, it is advisable not to apply brakes too hard that lock up their rolling motion especially at high speeds. Moreover, it is unsafe to drive a vehicle with worn out tyres.

3.3 SHORT QUESTIONS

Q. 1 Define friction? Write cause of friction its formula, unit and direction. (K.B+U.B)

Ans: Given on Page \# 115
Q. 2 Define coefficient of friction. Write its formula and unit (if any)? (K.B)

Ans: Given on Page \# 116
Q. 3 Write some situations where friction is desirable (A.B)

OR Describe two situations in which force of friction is needed.
Ans:
FRICTION IS DESIRABLE
Friction plays very important role in our daily life. It is desirable in following situations:

- Friction is needed to walk on the ground. It is risky to run on wet floor with shoes that have smooth soles. Athletes use special shoes that have ekraorainary (id) grip. Such shoes prevent them from slipping while rurinirg fast.
- Friction is desirable for stopping blcueje for har ose we apdy brakes. The rubber pads pressed agaimst the rum previde friction. It is the friction that stops the bicycle.
- Flictint is desirale while writing.
- Friction is higgly desirable while climbing a hill.
Q. 4 Write some sitations where friction is undesirable. (K.B)

FRICTION IS UNDESIRABLE
Eicton is undesirable in following situations:

- Where we have to move with high speed e.g. while skating we do not need friction.
- Friction is not desirable in those situations, where we have to conserve energy.
Q. 5 Write down the advantages and disadvantages of friction. (A.B)
(LHR 2011, 2017, GRW 2011, 2912, GRW 20131
Ans:

ADVANTAGES AND DISADVANTAGES

Friction has both advantages and disadvantages. Some fictinem are giver beipu:

Disadvantaces:

- Fviction is undesirable when moving at high speed because it opposes the motion and the s linits the speed of the moving objects.
Mosi of our iscful energy is lost as heat and sound due to the friction between Curijus moving parts of machines.
- In machines, friction also causes wear and tear of their moving parts.

Advantages:

- We write due to presence of friction between paper and pencils.
- Friction enables us to walk on the ground.
- We can tie a knot due to friction
- A nail stays in the wood due to friction.
- Birds can fly, due to air resistance. The reaction of pushed air enables the birds to fly.
Q. 6 Write down the methods to reduce friction. (K.B)

OR Describe ways to reduce friction.
(Ex. 3.16, LHR 2013)
Ans:
METHODS TO REDUCE FRICTION
The friction can be reduced by:

- Making the sliding friction smooth
- Making the fast moving objects a streamline shape (fish shape) such as car, aeroplanes, etc. this causes the smooth flow of air and thus minimizes air resistance at high speeds.
- Lubricating the sliding surfaces.
- Using ball bearings or roller bearings. Because the rolling friction is lesser than the sliding friction.
Q. 7 Define Sliding and rolling friction? (K.B)

Ans:

SLIDING FRICTION

Definition:

"The frictional force opposing the sliding or drassing of one solid bodyover another solid body is called sliding friction."

Definition:

ROI NOFPICTICN

Wirictictiontwean urfaes bing nollea on each other by using wheel, tyre or ball bearing it called oo ling friction".
Q. 8 Why Rollipg trect on is always less than sliding friction why? (K.B) (\times. 8.1 (1) LER 2013, 2014)

REASON FOR BEING LESS

Rolling friction is always less than sliding friction due to less in contact surface area and less cold-weld regions between surfaces. The wheel rolls without rupturing the cold
welds. The fact that rolling friction is less than sliding friction is applied in ball bearing to reduce losses due to friction.

Example:

It is easy to roll a cylindrical eraser on paner nef than to slide tecalse rolling friction is less than sliding irction.
Q. 9 Suppose you are running and yant to ston at once. suinely you-will have to produce negative cceleration in your sped Can yo tell from where does the necessary force cme? (K.E)
Ans:

FORCE NEEDED TO STOP

Thile runnjig when we want to stop at once, we press the ground firmly with our feet. This fiction comes into play due to relative motion of our feet and ground which acts opposite direction to our motion and it reduces our speed and ultimately we come to stop.
Q. 10

Have a look on the figure and answer given Questions. (K.B)
(Quick Quiz Pg. \# 74)

1. Which shoe offer less friction?

LESS FRICTION

Shoe with flat sole will offer less friction
2. Which shoe is better for walking on dry track?

Ans:
BETTER FOR WALKING
On dry track, shoe with flat sole is batter for walking.
3. Which shoe is better for jogging?

Ans: BETTER FOR JOGGING
Shoe which has not flat sole is batter for jogging.
4. Which sole will wear out early?

Ans:
WEARING OUT
Shoe with flat sole will wear out early.
Q. 11

Why is it easy to roll a cylindrical eraser on a paper sheet than to slide it?(K.B)
1.

Ans: ROLLING CYLINDER
It is easy to roll a cylindrical eraser on a paper sheet than to slide it bec. use ollin friction is less than sliding friction.
2. Do we roll or slide the eraser to ernove the renci work fiom our notioook?(K.B) Ans: SWINOTRANG
We slide the eraser to mond hed and k frem notebook because we need more friction to tennove the worr and shditg friction is greater than rolling friction.
Q. 12 In which ase it casv or he tyre to roll over? (K.B)
(i) rough ground (ii) smooth ground

Rour und: In case of rough ground it is difficult for the tyre to roll over because ugn surface offer more friction.
Smooth Ground: In case of smooth ground it is easier for the tyre to roll over because smooth surface offer less friction.
Q. 13 In which case do you need smaller force and why? (K.B)
(i) rolling
Rolling:

In case of rolling friction we need smalle iorce becario there is contact-vitherm on only a single point.
Sliding:
In case of slifing friction we reed/greater orce beci use alder oody is in contact with the earth.
Q. 14 Many boople weleves that relling window down of their car can decrease the fuel consumption as compared to drive with window up and use Ac? (C.B)
Ans: Yestheir perception is right out not always. In summer temperature is high generally, so people vait to sede ther tuel because fuel consumption increase in summer. When you are driving with ic us speed you can roll your car window down because dynamic friction of air is law at low speed and do not use Ac. But when you drive fast than roll window up because dynamic friction of air at that time is maximum and consume more fuel as compared to Ac.
Q. 15 Why the body of car make smooth? (C.B)

Ans: Air resistance is a form of dynamic friction. When a car is travelling fast, it is the largest of all the frictional forces opposing motion. Air resistance waste energy, so less air resistance means better fuel consumption. Car bodies are specially shaped to smooth the air flow past them and reduce air resistance. A low frontal area also helps.
Q. 16 Why the top of surfboard is rough and down side of the surfboard is smooth? (C.B)

Ans: the top of a surfboard is often given a wax coating. Tiny bumps of wax increase friction by sticking to the surfer's fe4et. However, the underside of a surfboard has a smooth, glassy surface so that it can slide across the water with as little friction as possible.
Q. 17 Why do meteoroids (shooting star) burn up in the mesosphere?

Ans: Meteoroids burn up in the mesosphere because of the presence of atmosphere. Due do presence of gases, friction is created and heat is generated causing meteoroids to burn in mesosphere.

3.3 MULTIPLE CHOICE QUESTIONS

1. The force which resists the motion of one surface on another surface is known as: (K.B)
(A) Gravity
(B) Friction
(C) Weight
(D) Repulsion
2. When object is at rest, the force of friction is known as: (K.B)
(A) Static friction
(B) Limiting friction
(C) Kinetic friction
(D) Dynamics friction
3. The maximum value of static friction is known as: (K.B)
(A) Static friction
(B) Limiting friction
(C) Kinetic friction
(D) Dynamics friction
4. When an object is in motion then the force of friction Is Enonn

(A) Static friction
(C) Kinetic friction
5. Static friction is:
(3) Lin iting fricticn
(A) Less it an linetic friction
(C) Greater that kinetic frict or
(B) Quartered to kinetic friction
(D) Equal to kinetic friction
(L) Dynanhies friction
6. Polïng friction is. (KB)
(AN ese then stiding friction
(B) Quartered to sliding friction
(d) जreater than sliding friction
(D) Equal to sliding friction

The unit of coefficient of friction is: (K.B)
(A) Newton
(B) Dynes
(C) No unit
(D) Kilogram
8. Friction of liquids is: (K.B)
(A) Less than friction of solids
(B) Quartered to friction of colids
(C) Greater than friction of solids
(D) Equal to friction of solids
9. In rolling friction surfaces have less: (K.B
(A) Area of contact
(C) Weight
(3) Normal Reaction
10. The rolling friction is: (K. B)
(I) Roughness
(A) 10 tiva less than siding friction
(D) 50 times less than sliding friction
(C) 100 tiones less than sidig frietion
(D) 1000 times less than sliding friction
11. Friction in he human joints is much reduced due to the presence of: (K.B)
(A) bones
(B) Muscles
(0) Iluid
(D) Gas
12. Value of coefficient of friction (μ_{k}) depends upon: (K.B)
(A) Nature of the surfaces
(B) Area of contact
(C) Weight
(D) All of above
13. Frictional forces follow which law of motion? (K.B)
(A) First
(B) Second
(C) Third
(D) Fourth
14. A spider web remains intact due to: (K.B)
(A) Weight
(B) Momentum
(C) Tension
(D) None of these
15. Value of coefficient of static friction (μ_{s}) is usually: (K.B)
(A) Less than μ_{k}
(B) Quartered to μ_{k}
(C) Greater than μ_{k}
(D) Equal to μ_{k}
16. Sliding friction is commonly converted into rolling friction by the use of: (K.B)
(A) Ball bearing
(B) Oil
(C) Grease
(D) Polish
17. The front sides of high speed vehicles, aero planes and ships are shaped wedge like to reduce: (K.B)
(A) Weight
(B) Pressure
(C) Speed
(D) Friction
18. The value of coefficient of friction between iron and iron is: (K.B)
(A) 1
(B) 0.6
(C) 0.2
(D) 0.62
19. The value of coefficient of friction between tyre and wet road is: (K.B)
(A) 1
(B) 0.6
(C) 0.2
(D) 0.62
20. The value of coefficient of friction between tyre and IIy road is. (I. (3) C
(A) 1
(3) 06
(C) 0.2
(D) 0.62
21. The value of coefficient of fristion betweer woad and wood is: (K.B)
(A) 1
(D) 0.6
(C) 0.2
(D) 0.62
22. The yal of coeficient of friction between wood and concrete is: (K.B)
(A) 1
(B) 0.6
(c) 1
(D) 0.62
23. Which of the following material lowers friction when pushed between metal plates?
(K.B)(LHR 2014, 2015)
(A) Water
(B) Fine marble powder
(C) Air
(D) Oil

\section*{\section*{3.4

 UNIFORM CIRCULAR MOTION

 UNIFORM CIRCULAR MOTION
 LONG QUESTIONS}

 Ans: CENTMIPET AI $=$ OR

Definition:

"Centripetal force is a force that keeps a bory o irlove in diere." Formı
Formulan centripetal is riven below.

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}
$$

Unit.
Unit of centripetal force is newton (N)
Quantity:
It is a vector and derived quantity

Direction:

It is directed towards centre of the circle perpendicular to the direction of the motion of the body at any point.

Derivation of Formula:

Let a body of mass \mathbf{m} moves with uniform speed \mathbf{v} in a circle of radius \mathbf{r} as shown in the figure:

The acceleration a_{c} produced by the centripetal force F_{c} is given by
Centripetal acceleration $a_{c}=\frac{v^{2}}{r}$

According to Newton's second law of motion, the centripetal force F_{c} is given by,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}=\mathrm{ma}_{\mathrm{c}} \\
& \mathrm{~F}_{\mathrm{c}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}
\end{aligned}
$$

Factors:

Centripetal force depends upon following factors

Mass of the Object:

If we double the mass of the body, required centripetal force to compe it to move in cirerar path will become double.

Radius of the Circular:

If we double the radius of the circle, reduied centripetal forde to compel the body to move in circtar path willecome hall.

Speed cuhe lydy:

If we do ab e the speed of he body, required centripetal force to compel the body to move in Ginca ar path will become four times greater.

- xamples:

- The moon revolves around the Earth in circular path, the required centripetal force is provided by the gravitational pull of the Earth.
- A stone tied with string, whirled in circular path is compelled to move in circular path by centripetal force provided by our muscles via string.
- While the coaster cars move around the loop, the track provides centripetal force

3.4 Q. 2 Define and explain Centrifugal force. Is it a reaction of centripetal force? (U.B+K.B)
(GRW 2014)

Ans:

CENTRIFUGAL FORCE

Definition:

"A force which compels the body to move away from circular path is known as centrifugal force".

Formula:

It is reaction of centripetal force.
Formula of centripetal is given below:

$$
\mathrm{F}_{\mathrm{r}}=\frac{\mathrm{mv}}{} \mathrm{~m}^{2}
$$

Unit:

Unit of centrifugal force is newton (N)

Quantity:

It is a vector and derived quantity

Direction:

It is directed away from the centre of the circle perpendicular to the direction of the motion of the body at any point.

Example:

Consider a stone tied with a string moving in a circle. The necessary centripetal force acts on the stone through the string that keeps it in the move in a circle. According to Newton's third law of motion, there exists a reaction to centripetal corce. Cen mey ea reaction that pulls the string outward is sometimes the centrifisal fo ce .

3.4 SHORT CTHSACLTA

Q. 1 Define circular motion. (K. β)

Ans:
Defini 10 :
GIRCUR MOOO
3Th tip onhe body moring in circular path is known as circular motion."
Exampes

- Ihe rnotion of the moon around the Earth is nearly in circular orbit.

The paths of electrons moving around the nucleus in an atom are also nearly circular.

- Motion of the stone tied with the string

Q. 2 Can aba move witinnfom vecity a dise? If not, why? (K.B)

Ans: \quad NO LI ORW VEi OCITY IN CIRCLE
When of bly is moving if circle it may have uniform speed but its velocity is nonviform bechu:e direction of the body is changing at every instant
23 Drinecen ripetal acceleration. (K.B)

Definition:

"The acceleration produced by the centripetal force in a body moving in circular path is known as centripetal acceleration."

Formula:

It is represented by a_{c}. and its formula can be derived as:
We know,

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}
$$

According to Newton's $2^{\text {nd }}$ Law of Motion F $=$ ma
So,

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{ma}_{\mathrm{c}}
$$

So, Centripetal Force is given by,

$$
\begin{aligned}
& \mathrm{ma}_{\mathrm{c}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
& \mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}
\end{aligned}
$$

Unit:

Its unit is ms^{-2}
Q. 4 Why centripetal acceleration acts towards the centre? (Conceptual Base)

Ans: The centripetal acceleration acts towards the centre because velocity is speed in a particular direction so a change in velocity can mean either a change in speed or a change in direction. If something has a changing velocity, then it has acceleration-in the same direction as the force. So, with circular motion, the acceleration is towards the centre of the circle. It may be difficult to imagine something accelerating towa as point witcut getting closer to it, but the object is always moving inwais irom the position it ..oud have had if traveling in a straight liie.
Q. 5 Why outer edge of the rad is papher than inner edge (oanking of road)? Explain. (K. $B+A . B$)
(LHR 2013)
Ans:

PANK NOF OE ROADS

When ofar takes a turn dentripeal force is needed to keep it in its curved track. The frictipn betwer the tyres and road provides the necessary centripetal force. The car Ypald skid away if the force of friction between the tyres and the road is not sufficient enough particularly when the roads are wet. This problem is solved by banking of curved roads.

Bankin of road means that the outer edge of a road is raised. Banking causes a comifonent of chicle's weight to provide the necessary Centripetal force while taking a InI. Thas oanking of road prevents skidding of vehicle and thus makes the driving safe.
Why cyclists bend himself toward the inner side of the curved path while taking turn with high speed? ($U . B+A . B$)
Ans:

BENDING OF CYCLISTS

A cyclist bend himself toward the inner side of the curved path while taking turn with high speed to provide necessary centripetal force with his weight to take turn in circular path to avoid slipping.
Q. 7 Can a body move along a circle without the centripetal force? (K.B)

Ans: CIRCULAR MOTION AND CENTRIPETAL FORCE
When a body moves in a circular path, it does so under the action of centripetal force. This force is directed towards the center along the radius of the circle. As the radius is perpendicular to the tangent of the circle, the centripetal force keeps the body in circular path. Thus, in absence of centripetal force, the body cannot move in a circular path.
Q. 8 Moon revolves around the earth, from where it gets necessary centripetal force? (K.B)

Ans: CENTRIPETAL FORCE ON MOON
The gravitational force between the earth and the moon provides the necessary centripetal force to moon for revolving around the earth.
Q. 9 Define centrifuge? (K.B)

Ans:

CENTRIFUGE

Definition:

"All devices that work on the principle of centrifugal force is called centrifuge."

Examples:

Following are important centrifuge machines:

- Washing machine dryer
- Cream separator
Q. 10 Explain the function of washing (nzchine (drye). (A.B)

OR Why the spinner of wash machit e is made to spin at yevhighspeed?
Ans:

Const uetion:

The dryer of a washing achine is basket spinner. They have perforated wall having large nu nters of ne boles in the cylindrical rotor. The lid of the cylindrical container is -laved atter putting wet clothes in it.

Working:

II wo kin the principle of centrifuge Machine.
When it spins at high speed, the water from wet clothes is forced out through these holes due to lack of centripetal force.

Q. 11 Explain the function of cream separator. (A.B)

Ans:

CREAM SEPARATOR

Construction:

Most modern plants use a separator to control the fat contents of various products. A separator is a high - speed spinner. It consists of a bowl.

Working:

- It acts on the same principle of centrifuge machine.
- The bowl spins at very high speed causing the heavier contents of the milk to move outwards in the bowl pushing the lighter contents inwards towards the spinning axis. Cream or butterfat is lighter than other components in the milk. Therefore, skimmed milk, which is denser than cream is collected at outer wall of the bowl. The lighter part (cream) is pushed towards the center from where it is collected through
 a pipe.

EXAMPLE 3.8

A stone of mass 100 g is attached to a string 1 m long. The stone is rotating in a circle with a speed of $5 \mathrm{~ms}^{-1}$. Find the tension in the string.(U.B+A.B)

Solution:

Given Data:

Mass of the body $=\mathrm{m}=100 \mathrm{~g}=0.1 \mathrm{~kg}$
Radius of the circle $=r=n$
Speed $\frac{10}{} \mathrm{t}$ the body $-v=5 \mathrm{ras}$

To Find:
Tens on in lye tring $=T=F_{c}=$?
Cacculations:
In this case tension in the string will

$$
\mathrm{T}=\mathrm{F}_{\mathrm{c}}=2.5 \mathrm{~N}
$$

Result:

Hence, the tension in the String will be 2.5 N .
provide necessary centripetal force.
As we know that,

MULTIPLE CHOICE QUESTIONS

1. In circular motion, the motion of every particle of body is: (K.B)
(A) Different
(C) Same
2. The force which compels a body to nove.in rirce is: (K.ß)
(A) Centripotal force
(B) Centiffagal force
(C) Pe pendicura force
(D) Tension
3. If the velccity of and ving hody in a circle is doubled, then its centripetal force is (A.D)
(AN) I cable
(B) Half
(d) Four times
(D) Remain

The centripetal acceleration is always along: (K.B)
(A) Normal forces
(B) Centripetal force
(C) Mass
(D) Horizontal force
5. If centripetal force acting on a body is doubled then its velocity will become: (A.B)
(A) Double
(B) Opposite
(C) Half
(D) Four times

MCQ'S ANSWER KEY (TOPIC WISE)

3.1	FORCE, INTERTIA AND MOMENTUM						
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
A	C	B	C	A	B	C	C

3.2 NEWTON'S LAWS OF MOTION

1	2	3	4	5	6	7	8	9	10	11	12
B	B	A	C	A	B	B	A	B	C	B	A
13	14	15	16	17	18	19	20	21	22	23	24
C	C	D	C	D	A	C	A	B	C	D	D
25	26	27	28								
A	D	A	B								

TENSION AND ACCELERATION IN STRING

Encircle the corrent inswer from the given choices.
i. Newtor's tirst aw of notion is valid only in the absence of. (K.B)(LHR 2014, GRW 2015)
(a) force
(b) net force
(c) (iriction
(d) momentum

Uertia depends upon: (K.B)
(LHR 2017)
(a) force
(b) net force
(c) mass
(d) velocity
iii. A boy jumps out of a moving bus. There is a danger for him to fall: (K.B) (LHR 2017)
(a) towards the moving bus
(b) away from the bus
(c) in the direction of motion
(d) opposite to the direction of motion
iv. A string is stretched by two equal and opposite forces of 10 N each. The tension in the string is: $(A . B+U . B)$
(a) Zero
(b) 5 N
(c) 10 N
(d) 20 N
v. The mass of a body: (K.B)
(a) decreases when accelerated
(b) increases when accelerated
(c) decreases when moving with high velocity
(d) none of the above
vi. Two bodies of masses m_{1} and m_{2} attached to the ends of an inextensible string passing over a frictionless pulling such that both move vertically. The acceleration of the bodies is: (K.B)
(a) $\mathrm{a}=\frac{\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{g}}{\mathrm{m}_{1}+\mathrm{m}_{2}}$
(b) $\mathrm{a}=\frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
(c) $\mathrm{a}=\frac{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}}{\mathrm{m}_{1}-\mathrm{m}_{2}}$
(d) $a=\frac{m_{2} g}{m_{1}+m_{2}}$
vii. Which of the following is the unit of momentum? (K.B)
(a) Nm
(b) kgms^{-2}
(c) Ns
(d) Ns^{-1}
viii. When horse pulls a cart, the action is on the: (K.B)
(a) cart
(b) ear'II
(c) horse
(d) e:rthanicar

ix. Which of the following naterat oversficuion when pushed letween metal plates? (K.B)
(LHR 2014, 2015)
(a) wate?
(b) fine marble powder
(c) air

ANSWER KEY

ii	iii	iv	v	vi	vii	viii	ix	
b	c	c	c	d	a	c	b	d

3.1 Define the following terms: (K.B)
i) Inertia
ii) Momentum
iv) Force of friction
v) Centripetal force
3.2 What is difference between: (K.B)
(i) Mass and weight
(ii) Action and reaction
(iii) Slidirs friction and rulling rictipn

Ans: Given anthe previous pages
3.4 What in the le vo neria

Ans: Given on the previbus pages \#94
3.5 Wry is it datagerous to travel on the roof of a bus? (K.B)

TRAVELLING ON THE ROOF

It is dangerous to travel on the roof of a bus because when brakes are applied suddenly, the lower part of body of passenger sitting on its roof comes to rest immediately but due to inertia upper part of his body continues its motion in a straight line and he may fall forward and gets injured if there is no support.
3.6 Why does a passenger move outward when a bus takes a turn? (K.B)

Ans:

OUT WARD MOTION

When a moving bus takes a sharp turn, passengers fall in the outward direction. It is due to inertia that they want to continue their motion in a straight line and thus fall outwards.
3.7 How can you relate a force with the change of momentum of a body? (K.B)

Ans: See Q.no.6 Long Question
3.8 What will be the tension in a rope that is pulled from its ends by two opposite forces 100 N each? (U.B)
Ans:

TENSION IN THE ROPE

The tension in a rope that is pulled from its ends by two opposite forces 100 N each will be 100 N .
3.9 Action and reaction are always equal and opposite then how does a body move? (K.B)

Ans:
ACTION AND REACTION
Action and reaction are equal in magnitude but opposite in direction. Action and reaction do not act on the same body. Action is applied on one body due to which an equal and opposite reaction is acting on another body. Both of these do not neutralize each other due to which the body will move.
3.10 A horse pushes the cart. If the action and reaction are equal and opposite then how does the cart move? (U.B)
Ans:

MOTION OF THE CART

Yes, Action and reaction are equal in magnitude but are opposite in dimection but the (Io not cancel each other because they act on two different bodics.
The horse apply action on the road by his feet, the reaction is given by ure road on the horse, due to which horse miques. The cart which s ied with the horse will also move.
3.11 What is the law of conser airnor mentur? (X)B

Ans: Given marle \# lio
3.12 Why is ite law o cor strvation of nementum important? (K.B+A.B)

Ans: $\quad 1,1$ UT CONSERVATION OF MOMENTUM
Imprtance
 oigger bodies as well as on atoms and molecules. A system of gun and bullet, rocket and jet engines etc. work on the Principle of law of conservation of momentum. This law helps us to understand variations in quantity of motion of different bodies.
3.13 When a gun is fired, it recoils. Why? (K.B)

Ans: Given on the previous pages \# 111
3.14 Describe two situations in which force of friction is needed? (K.B)

Ans: Given on the previous pages \# 118
3.15 How does oiling the moving parts of a mach ine lowt fricion: (K. B) (GRW 2017) Ans: $\underline{\underline{O} L N G I N R N E L C N O N}$

As the friction of liquids is les than ir or of so oiling the moving parts of the machies orver time friction. On mates cold weld loose by making pits and bumps slipperymence bil ny lovers friction.
3.16 Describe whys o educe ficion. (K.B)
(LHR 2014)
Ans: Giver or pare ty 19
$317 / 1 / 1$ @ing friction is less than sliding friction? (K.B)
(LHR 2013, 2014)
Ans. Given on page \# 119
3.18 What you know about the following: (K.B)
(i) Tension in the string
(TOPIC TENSION AND ACCELERATION IN THE STRING SHORT QUESTION\#1)
(ii) Limiting force of friction
(TOPIC 3.3 FRICTION LONG QUESTION\#1)
(iii) Braking force
(TOPIC 3.3 FRICTION LONG QUESTION\#3)
(iv) Skidding of vehicles (TOPIC 3.3 FRICTION LONG QUESTION\#3)
(v) Seatbelts (TOPIC FORCE AND MOMENTUM SHORT QUESTION\#11)
(vi) Banking of roads (TOPIC 3.4 UNIFORM CIRCULAR MOTION SHORT QUESTION\#4)
(vii) Cream separator (TOPIC 3.4 UNIFORM CIRCULAR MOTION SHORT QUESTION\#10)
3.19 What would happen if all friction suddenly disappears? (K.B)

Ans: \quad FRICTION SUDDENLY DISAPPEARS
If all friction suddenly disappears the movement will become uncontrollable. The balance of natural forces will be disturbed and the whole system will collapse.
3.20 Why the spinner of washing machine is made to spin at very high speed? (K.B)

Ans:
SPINNER OF WASHING MACHINE
Spinner of washing machine is made to spin at high speed because water is to be thrown out of wet clothes through perforated walls. Water moves out due to lack of centripetal force. As we know,

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}
$$

This formula indicates that when speed will be high more centripetal force will be required to make the water particles to move in circles hence due to lack of centripetal force water moves out through perforated walls.

NUMERICAL PROBLEMS (U.B + A.B

3.1 A force of 20 N moves a body with an acceleration $\boldsymbol{f} 2 \mathrm{~ms}^{-2}$ What is it 1 s ingss?
(LHR 2013)

Solution:

By puting, the values, we have Given Data
Force act)ig or the body $=F=20 \mathrm{~N}$
Accele at on or the po ly $=a=2 \mathrm{~ns}$
To Find:
Thas of the bod $=m=$?
alcuAtions:
rrom Newton's second law of motion

$$
\begin{aligned}
& \mathrm{m}=\frac{20}{2} \\
& \mathrm{~m}=10 \mathrm{~kg}
\end{aligned}
$$

Result:
Hence, mass of the body will be 10 kg .
3.2 The weight of a body is 147 N . What is its mass?
(LHR 2013, 2015)

Solution:

Given Data:
Weight of the body $=\mathrm{w}=147 \mathrm{~N}$
Gravitational acceleration $=10=10$
To Find:
Mass of he boly $-\mathrm{m}=$?
Calculations:
$\mathrm{w}=\mathrm{mg}$

As we kiov that

Result:

Hence, the mass of the body will be 14.7 kg .
3.3 How much force is needed to prevent a body of mass 10 kg from falling?

Solution:

Given Data:

Mass of the body $=10 \mathrm{~kg}$
Gravitation acceleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$
To Find:
Force required to prevent the body from falling $=\mathrm{R}=$?

Calculations:

$$
\mathrm{R}=\mathrm{w}=\mathrm{mg}
$$

By putting the values, we have

$$
\begin{aligned}
& \mathrm{R}=\mathrm{w}=10 \times 10 \\
& \mathrm{R}=100 \mathrm{~N}
\end{aligned}
$$

Result:

Hence, the force required to prevent the body from falling will be 100 N .

As we know that in stable position,
3.4 Find the acceleration produced by a force of 100 N in a mass of $\mathbf{5 0} \mathbf{~ k g}$.
(GRW 2013)

Solution:

Given Data:

Force acting on the body $=\mathrm{F}=20 \mathrm{~N}$
Mass of the body $=\mathrm{m}=50 \mathrm{~kg}$

To Find:

Acceleration of the body $=\mathrm{a}=$?

Calculations:

From Newton's second lav of rrotion

So $\quad a=\frac{F}{m}$
By putting the values, we have
$\mathrm{a}=\frac{100}{50}$
$\mathrm{a}=2 \mathrm{~ms}^{-2}$
Result:
Henc. he acceloration produced will
3.5 A body has weight 20 N . How much force is required to move it vertically upwards with an acceleration of $2 \mathrm{~ms}^{-2}$.

Solution:

Given Data:

Weight of the body $=20 \mathrm{~N}$ Acceleration of the body $=\mathrm{a}=2 \mathrm{c}$
Gravitatio acceleration $=\mathrm{g}=\equiv 1 / 0 \mathrm{ins}$
Normal reaction $=R=T=10 \mathrm{~N}$
To Find:
Fore: actirg on the body moving veril:aibunard $=\mathrm{F}=$?

Calculations:

As we know that

$$
\mathrm{w}=\mathrm{mg}
$$

$$
\text { So } \quad m=\frac{w}{g}
$$

Dy putting the values, we have
$\mathrm{F}=2 \times 2 \Rightarrow \mathrm{~F}=4 \mathrm{~N}$
Now net force required to move the body upward $=$ normal reaction + force producing acceleration
$=20 \mathrm{~N}+4 \mathrm{~N} \Rightarrow 24 \mathrm{~N}$

Result:

Hence, the force acting on the body moving vertical upward will be 24 N .
3.6 Two masses 52 kg and 48 kg are attached to the ends of a string that passes over a frictionless pulley. Find the tension in the string and acceleration in the bodies.

Solution:

Given Data:

Mass of first body $=m_{1}=52 \mathrm{~kg}$
Mass of second body $=m_{2}=48 \mathrm{~kg}$
Gravitational acceleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$

To Find:

Acceleration of the bodies $=\mathrm{a}=$?
Tension in the string $=\mathrm{T}=$?

Calculations:

When the two bodies are moving vertically then acceleration of the bodies is as,

$$
\mathrm{a}=\frac{\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

By putting the values in above equation, we have

$$
\mathrm{a}=\frac{(52-48) \times 10}{52+48}
$$

Acceleration of the bodies $=0.4 \mathrm{~ms}^{-2}$

When the two bodies are moving vertically then tension in the string is as,

$$
\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

By putting the values in above equation, we have

$$
\begin{aligned}
& \mathrm{T}=\frac{2 \times 52 \times 48 \times 10}{52+48} \Rightarrow \mathrm{~T}=\frac{49920}{100} \\
& \mathrm{~T}=499.2 \mathrm{~N}=500 \mathrm{~N}
\end{aligned}
$$

Tension in the string $=500 \mathrm{~N}$

Result:

Hence, the acceleration in and
Tand tension will D e $0.2 / \mathrm{m} s^{-2}$ and 50 g
 (a) $=\frac{40}{100} \Rightarrow a=0.4 \mathrm{r}$

3.7 Two masses 26 kg and 24 kg are attached to the ends of a string which passes over a

 frictionless pulley. $26 \mathbf{k g}$ is lying over a smooth horizontal table. $24 \mathbf{k g}$ mass is moving vertically downward. Find the tension in the sting and the acceleration in the bodies.Solution:
Given D_{a} a:

Mass of the pook mpring verricaly =
$\mathrm{m}_{1}=24 \mathrm{~kg}$
IVa, of he tock moving along table $=$
$\mathrm{m}_{2}=26 \mathrm{~kg}$
Gravitational acceleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$

To Find:

Acceleration of the bodies $=\mathrm{a}=$?
Tension in the string $=\mathrm{T}=$?

Calculations:

When one body is moving vertically and other body is moving horizontally then acceleration of the bodies is as,

$$
a=\frac{m_{1} g}{m_{1}+m_{2}}
$$

By putting the values in above equation, we have
$\mathrm{a}=\frac{24 \times 10}{24+26}$
3.8 How much time is required to change 22 Ns momentum by a force of 20 N ?
(LHR 2014)

Solution:

Given Data

Change in momentum $=\Delta \mathrm{P}=22 \mathrm{Ns}$
Force applied $=\mathrm{F}=20 \mathrm{~N}$
To Find:
Time requ red $1=t \sim 2$
Calculetions:

By putting the values, we have

3.9 How much is the force of friction between a wood block of mass 5 kg and the horizontal marble floor? The coefficient of friction between wood and marble is 0%
Solution:

Given Data:

Mass of the block $=\mathrm{m}=5 \mathrm{~kg}$
Coefficient of friction $-\mu_{s}=U_{5}$
To Fin
Fores. of friction $=\mathrm{F}_{\mathrm{s}}=$?
Deg cations:
As we know that

$$
\mathrm{F}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{mg}
$$

B nuttiglthe
,
B

$$
F_{S}=30 \mathrm{~N}
$$

Result:

Hence, the force of friction between a wooden block and horizontal marble floor will be 30 N .
3.10 How much centripetal force is needed to make a body of 0.5 kg to move in a circle of radius 50 cm with a speed of $3 \mathrm{~ms}^{-1}$?
(LHR 2012)

Solution:

Given Data:

Mass of the body $=\mathrm{m}=0.5 \mathrm{~kg}$
Radius of the circle $=r=50 \mathrm{~cm}=0.5 \mathrm{~m}$
Speed of the body $=v=3 \mathrm{~ms}^{-1}$

To Find:

Centripetal force $=\mathrm{F}_{\mathrm{c}}=$?

Calculations:

As we know that
$\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{mv}}{}{ }^{2}$
By putting the values, we have

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}=\frac{0.5 \times(3)^{2}}{0.5} \\
& \mathrm{~F}_{\mathrm{c}}=9 \mathrm{~N}
\end{aligned}
$$

Result:

Hence, the centripetal force needed, will be 9 N .

Time: 40 min .

SELF TEST

Q. 1 Four possible answers $(A),(B),(C) \&(B)$ to each-question are gren, mart the correct answer.

1. Newton's first law of motion is yalid n y ile bsence of:
(A) Fcref
(D) Net force
(C) Friction
(D) Momentum

Inefia derencsmon:
(A) Jo~e
(B) Net force
(C) Velocity
(D) Mass
3. A block of $\mathbf{4} \mathbf{~ k g}$ is supported by a string. The tension in the string is:
(A) 20 N
(B) 40 N
(C) 4 N
(D) 0 N
4. Rate of change of momentum is equal to:
(A) Force
(B) Velocity
(C) Acceleration
(D) Impulse
5. When object is at rest, the force of friction is known as:
(A) Static friction
(B) Limiting friction
(C) Kinetic friction
(D) Dynamics friction
6. In circular motion, the motion of every particle of body is:
(A) Different
(B) Opposite
(C) Same
(D) None of these

Q. 2 Give short answers to following questions.

($5 \times 2=10$)
i. A lead shot of mass 5 g is fired with an air gun. If the velocity of the shot is $60 \mathrm{~ms}^{-1}$. What is its Momentum?
ii. An inflated balloon shoots off when its air is released. Why?
iii. Why is it hard to stop fast moving and heavy vehicles?
iv. A body of mass 5 kg is moving with a velocity of $10 \mathrm{~ms}^{-1}$ Eirath frice stop ting
v. What is centripetal force? Write its dep ncence.
Q. 3 Answer the following quest ons:in detai\%.
a) State and Explain iam of conservat on of monentum.
a) A stome oi nass 100 g is atached to a string 1 m long. The stone is rotating in a circle with a peed of 5 ns ${ }^{-1}$. Find the tension in the string.
INes:
rarents or guardians can conduct this test in their supervision in order to check the skill of students.

