UNIT

PROPERTIESCF MATTER

Q. 1 Explain different states of inatter or the basis of inetic molecular heory. (LHR 2013) plasana.
(i) rolijd:

Solims have fixed shapes and volume. Their molecules are held close together by strong forces of attraction. However, they vibrate about their mean positions but do not move from place to place.

Examples:

Examples of solids are stone, metal spoon, pencil etc.

(ii) Liquids:

The distances between the molecules of a liquid are more than in solids. Thus, attractive forces between them are weaker. Like solids, molecules of a liquid also vibrate about their mean position but are not rigidly held with each other. Due to the weaker attractive forces, they can slide over one another. Thus, the liquids can flow. The volume of a certain amount of liquid remains the same but because it can flow hence; it attains the shape of a container to which it is put.

Examples:

Examples of liquids are milk, and liquid water etc.
than solids and liquids. They can be squeezed into smaller volumes.

Examples:

Oxygen, Nitrogen and Carbon dioxide are examples of gases.

Pressure of Gases:
The molecules of a gas are constantly striking the walls of a container. Thus, a gas exerts pressure on the walls of the container.
(iv) Plasma:
(LHR 2017)
The kinetic energy of gas molecules goes on increasing if a gas is heated continuously. This causes the gas molecules move faster and faster. The collisions between atoms and molecules of the gas become so strong that they tear off the atoms. Atoms lose their electrons and become positive ions. This ionic state of matter is called plasma.

Plasma in Discharge Tubes:

Plasma is also formed in gas discharge tubes when electric current passes through these tubes.

Plasma - The Fourth State of Matter:

Plasma is also called the fourth state of matter in which gas occurs in its ionic state. Positive ions and electrons get separated in the presence of electric and magnetic field. Plasma also exists in neon and fluorescent tubes when they glow.

Universe Formation:

Most of the matter that fills the universe is in plasma state. In stars such as our sun, gases exist in their ionic state.

Plasma Good Conductor:

Plasma is highly conducting state of mater. It allows electric current to pass through it.
Brownian motion: evidence for moving particles: (Interesting information)
Smoke is made up of millions of tiny bits of ash or oil droplets. If you look at smoke through a microscope, you can see the bits of smoke glinting in the light. As thev d菹 through the air, they wobble about in zing-zag paths. This effec ibeailed B (w) i.in motion, after the scientist Robert Brown ho first roticed the wobligg, voliceing motion of pollen grains in water; who first roticed the wolbling wandering motion of pollen grains in water; in 1827 .
The kinetic Theory explain. Evovinan motion as follows. The bits of smoke are just big enought to be reen bit hi le pe little mass that they are jostled about as thousands of particle. (ed sinplechles) in the surrounding air bump into them at random.

7.1, 7.2 SHORT QUESTIONS

Q. 1 What happens when we heat a gas? (K.B)

Ans: Given on Page \# 247
Q. 2 How can a liquid flow? (K.B)

Ans: Given on Page \# 246
Q. 3 What are the particles? (k.E)

Ans: Everytiiir \& is made ram about oo smple suostances called elements. An atom is the smalles possible mount of an elemont. In some materials, the 'moving particles' of the kinetic thep are atorns. However, in most materials, they are group of atoms called indecules. Below, each atom is shown as a coloured sphere. This is simplifies model (vescription) of an atom. Atoms have no colour or precise shape.
Why does a gas exert pressure? (K.B)
Ans:

GASEOUS PRESSURE

Gaseous molecules have random motion and move with very high velocities. They collide with one another and with the walls of container hence they exert pressure.
Q. 5 What is Kinetic molecular theory? Write down its postulates. (K.B)
(LHR 2013)
Most of the properties of solids, liquids, and gases can be explained on the basis of the intermolecular forces that has been explained by Kinetic molecular model. Kinetic molecular model has some important features.

- Matter is made up of particles called molecules.
- The molecules remain in continuous motion. The motion of molecules could be linear, vibrational, or rotational.
- The molecules attract each other.
Q. 6 What is plasma? (K.B)
(GRW 2013)
Ans: Given on Page \# 247
Q. 7 Define density. Write its formula and unit? (K.B+U.B+A.B)
(LHR 2013, 2107)
Ans:

Definition:

"Density of a substance is defined as its mass per unit volume."
Formula:

$$
\text { Density }=\frac{\text { mass of a substance }}{\text { volume of that substance }}
$$

Unit:
SI unit of density is kilogramme per cubic meter $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$.
Density Equations:

To Find:

$$
\text { Density of Water = } \mathrm{d}=\text { ? }
$$

Solution:

We know

Putting va'ues
Delsity $=\frac{5}{5 \times 10^{-3}}=1000 \mathrm{kgm}^{-3}$

Results:

The density of water is $1000 \mathrm{kgm}^{-3}$.
Q. 9 What do you know about density of the Earth's atmosphere? (K.B)

Ans:
DENSITY OF THE EARTH'S ATMOSPHERE
Earth's atmosphere extends upward about a few hundred kilometres with continuously decreasing density. Nearly half of its mass is between sea level and 10 km . Up to 30 km from sea level contains about 99% of the mass of the atmosphere. The air becomes thinner and thinner as we go up.

EXAMPLE 7.1

The mass of 200 cm 3 of stone is 500 g . Find its density. (U.B+A.B)

Solution:

Given Data:

Mass of stone $=m=500 \mathrm{~g}$
Volume of water $=\mathrm{V}=200 \mathrm{~cm}^{3}$

To Find:

Density of stone $=\mathrm{d}=$?

Solution:

We know
Density $=\frac{\text { Mass }}{\text { Volume }}$
Putting values
Density $=\frac{500}{200}=2.5 \mathrm{gcm}^{-3}$
Result:
Fience, the dencity do stone will be $2 \mathrm{Hgm}^{3}$.

7.1, 7.2 MULTIPLE CHOICE QUESTIONS

1. According to Kinetic Molecular theory, gases exert pressure on the wan the cotande due to their: (K.B)
(A) Weight
(C) Collisions
(iB) Mas S
(D) A. of beve
2. The molecules of me matter are al vays renesn in the state of: (K.B)
(A) Rest
(B) Plasma
(C) A Iot or
(D) Tension
3. The enolgy possessed by the molecules of the matter is due to its motion: (K.B)
(A) P.E.
(B) K.E.
(C) Sound
(D) None of above
4. When temperature of the matter increases, intermolecular forces : (K.B)
(A) Increases
(B) Decreases
(C) Remains same
(D) None of above
5. Molecules of which state of matter have strongest attractive for (K.B)
(A) Solid
(B) Liquid
(C) Gasses
(D) Plasma
6. How many states of matter are? (K.B)
(A) 2
(B) 3
(C) 4
(D) Many
7. Strongest attractive forces are in (K.B)
(A) Gases
(B) Liquid
(C) Solid
(D) Plasma
8. Weakest attractive forces are in (K.B)
(A) Solid
(B) Liquid
(C) Gases
(D) Plasma
9. Ionic state of matter is called (K.B)
(GRW 2013)
(A) Gas
(B) Plasma
(C) Liquid
(D) None of these
10. Plasma is (K.B)
(A) Good conductor
(B) Bad conductor
(C) Semi conductor
(D) Non conductor
11. Unit of density (K.B)
(A) $\mathrm{kg} \mathrm{m}^{3}$
(C) $\mathrm{kg} \mathrm{m}^{-3}$
12. A solid ohject is: (K. R)
(3) kg . n
(A) Noteliastic belew the elia stic limit
(C) Ela tic beio whe e a tic tinit
(B) Elastic above the elastic limit
(D) None of above
(L) $\mathrm{k}_{2} \mathrm{rm}^{2}$

What is density ol a:z? (K.B)
(B) $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
(N) $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $2700 \mathrm{~kg} \mathrm{~m}^{-3}$
13. What is densily
14. What is density of ice? (K.B)
(A) $920 \mathrm{~kg} \mathrm{~m}^{-3}$
(B) $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
(C) $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $2700 \mathrm{~kg} \mathrm{~m}^{-3}$
15. What is density of water? (K.B)
(A) $920 \mathrm{~kg} \mathrm{~m}^{-3}$
(B) $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
(C) $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $2700 \mathrm{~kg} \mathrm{~m}^{-3}$
16. What is density of Aluminum? (K.B)
(A) $920 \mathrm{~kg} \mathrm{~m}_{-3}^{-3}$
(C) $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$
17. What is density of iron? (K.B)
(A) 7900 kg n^{-3}
(C) 19300 gg
(D) $13600 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $8900 \mathrm{~kg} \mathrm{~m}^{-3}$ (B) 1000 (I) 27001
18. What is density of Conper? (K.B)
(A) 7900 kg m

(C) $1930 \mathrm{~kg} \mathrm{~m}^{-3}$

(B) $13600 \mathrm{~kg} \mathrm{~m}_{-3}^{-3}$

What is density of Aluminum? (K.B)
(A) $7900 \mathrm{~kg} \mathrm{~m}^{-}$
(C) $19300 \mathrm{~kg} \mathrm{~m}^{-3}$
(B) $13600 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $8900 \mathrm{~kg} \mathrm{~m}^{-3}$
20. What is density of Gold? (K.B)
(A) $2700 \mathrm{~kg} \mathrm{~m}^{-}$
(B) $13600 \mathrm{~kg} \mathrm{~m}_{-3}^{-3}$
(C) $19300 \mathrm{~kg} \mathrm{~m}^{-3}$
(D) $8900 \mathrm{~kg} \mathrm{~m}^{-3}$
21. $\quad \mathbf{1 m}^{3}=(K . B+U . B)$ (Useful information Pg. \# 147)
(A) 10 Litre
(B) 100 Litre
(C) 1000 Litre
(D) 0.1 Litre
22. $\quad 1 \mathrm{~cm}^{3}=(K . B+U . B)$
(B) $10^{-3} \mathrm{~m}^{3}$
(A) $10^{-6} \mathrm{~m}^{3}$
(D) $0.1 \mathrm{~m}^{3}$
23. 1 Litre $=(\boldsymbol{K} \cdot \boldsymbol{B}+\boldsymbol{U} \cdot \boldsymbol{B})$
(A) $10^{-6} \mathrm{~m}^{3}$
(B) $10^{-3} \mathrm{~m}^{3}$
(C) $1 \mathrm{~m}^{3}$
24. \quad 1000 $\mathrm{kgm}^{-3}=$
(D) $0.1 \mathrm{~m}^{3}$
(A) $10^{-6} \mathrm{gcm}^{-3}$
(B) $10^{-3} \mathrm{gcm}^{-3}$
(C) $1 \mathrm{gcm}^{-3}$
(Useful information Pg. \# 147)
(D) $0.1 \mathrm{gcm}^{-3}$
(Useful information Pg. \# 147)

7.3
 7.4
 PRESSURE
 ATMOSPHERIC PRESSURE

LONG QUESTIONS

Q. 1 What is atmospheric pressure? And explain atmospheric pressure with the help of an experiment.
OR Show that atmosphere exert pressure. $(K B+U . B+A . B)$
Ans:

Definition:

"The earth is surrounded by acover of air is called at nosphere."
Atmos bhy k e extands to a lew hundre kilometers above sea level. Just as certain sea creatures ive at the bottom df ccoan, we live at the bottom of a huge ocean of air.
Atmespher c Psure Lecreases With Height:
Airis the nixiure of gases. The density of air in the atmosphere is not uniform. It decreases continuously as we go up due to this reason atmospheric pressure decreases with height. The atmospheric pressure at sea level is greater as compared to hilly areas.
Atmospheric Pressure Acts in All Directions:
Atmospheric pressure acts in all directions.

Examples:

- Soap bubbles expand till the pressure of air in them is equal to tiu atmospheric pressure. Soap bubbles so formed have spherical shape becure the atmsphaic pressure acts on a bubble equally in qiindirections.

- A balloon expands as we fill air into it. The balloon will expand in all directions it is because of the fact that atmospheric pressure acts in all directions equally as shown in the figure.

Experiment:

The fact that atmosphere exerts pressure can be explained by simple experiment.

- Take an empty tin can with a lid.
- Open its cap and put some water in it. Place it over flame.
- Wait till water begins to boil and the steam expels therir out of the can
- Remove it from the flame
- Close the can firmby its cor.
- Now place the can unde tape vate as shown in tie figure:

Observations:

The can will squeeze due to atmospheric pressure.

Reasons:

When the can is cooled by tap water, the stean in it eordenses. As the see changes into water, it leaves an empty space behindit. Thit lov rels the pressure inside the van as compared to the atmospheric pressure cutside the cen. Tins vill cause that can to collapse from all directions. Th is experinent shovs that a no phers events pressure in all directions.
Q. 2 Which ovict is wed to neastre the triospheric pressure? Explain the measurement of atmo phacri pres ure bu esing barometer. (K.B+U.B+A.B)
Ans: \quad IEASUREMENT OF ATMOSPHERIC PRESSURE
Hitocoction:
At sea level, the atmospheric pressure is about $101, \mathbf{3 0 0} \mathbf{P a}$ or $\mathbf{1 0 1 , 3 0 0} \mathbf{N m}^{-2 .}$ The instruments that measure atmospheric pressure are called barometers. One of the simple barometers is a mercury barometer. Its construction and working is given below:

Construction:

It consists of a glass tube $\mathbf{1 m}$ long closed at one end. After filling it with mercury, it is inverted in a mercury trough. Mercury in the tube descends and stops at a certain height as shown in the figure:

Working:

The column of mercury held in the tube exerls prescueat ite base. At ss a eve the haight of mercury column above the mer ury in the trough is tound to be about 70 cm . Pressure exerted by 76 cm of mecury culum is neaty 101 . $00 \mathrm{Nm}^{-2}$ erpual to atmospheric pressure. If il commonto expes atmospheric pressare in terms of the height of mercury columis.As themophetil pressute at a place does not remains constant, hence, the height of reercury colu ni alss varies with atmospheric pressure.

IVie ur in Ba oncter Instead of Water:

Whiru@ 13.6 times denser than water. Atmospheric pressure can hold vertical column of water about 13.6 times the height of mercury column at a place. Thus, at sea level, vertical height of water column would be $0.76 \mathrm{~m} \times 13.6=10.34 \mathrm{~m}$. Thus, a glass tube more than 10 m long is required to make a water barometer that is difficult to handle and manage practically. So water is not suitable for constructing barometer.
Q. 3 Write a note on variation in atmospheric pressure. (K.B+U.B)

Ans: VARIATION IN ATMOSPHERIC PRESSURE
The atmospheric pressure decreases as we go up due to decrease in the remsity of he are.
The atmospheric pressure on mountains is over thama sea ren at al heisht diabout 30
$\mathbf{k m}$, the atmospheric pressuie becomes omy $7 \mathbf{m}$ o morcur. whith is approximately
1000 Pa. It would becorne zerd at \& alitude when there is no air. Thus we can
determing the altitade of a plave by inoving the almospheric pressure at that place.

Effect rivethen Atmospherio cessure:

Atmospherio press ure rady also indicate a change in the weather as:
Q 2 l a hot doy, ar above the Earth becomes hot and expands. This causes a fall of atmospheric pressure in that region.

- During cold chilly nights, air above the Earth cools down. This causes an increase in atmospheric pressure.
Expected Weather Changes Due to Variation of Atmospheric Pressure:
The changes in atmospheric pressure at a certain place indicate the expected changes in the weather conditions at that place.

Decrease in Atmospheric Pressure:

- A gradual and average drop in atmospheric pressure means a low pressure in a neighboring locality.
- Minor but rapid fall in atmospheric pressure indicates a windy and showery condition in the nearby region.
- A decrease in atmospheric pressure accompanied by breeze and rain.
- A sudden fall in atmospheric pressure often followed by a storm, rain and typhoon to occur in few hours' time.

Increase in Atmospheric Pressure:

- An increasing atmospheric pressure with a decline later on predicts an intense weather conditions.
- A gradual large increase in the atmospheric pressure indicates a long spell of pleasant weather.
- A rapid increase in atmospheric pressure means that it will soon be followed by a decrease in the atmospheric pressure indicating poor weather ahead.

7.3, 7.4 SHORT QUESTIONS

Q. 1 Define the term pressure write its formula and unit. (K.B+US)

Ans:

Definition:

"The force acting nomally per in anea on ne su thec ocaboly is called pressure."

Formula:

Quantity:

Pressure is a scalar and derived quantity.
Unit:
In SI units, the unit of pressure is $\mathrm{N} \mathrm{m}^{-2}$ also called Pascal (Pa). Thus, $1 \mathrm{~N} \mathrm{~m}^{-2}=1 \mathrm{~Pa}$

Q. 2 Write factors effecting pressure: (K.B)

Ans:
FACTORS EFFECTING PRESSURE
As we know
Above relation shows that ww agcrs effect presure:

- Ferce:

Pre sure i. lirectly proport onal to force. Greater the force on the surface greater will be the prespure on that surface.

- Area.

Fressure is inversely proportional to area. Greater the Area of the surface smaller will be the pressure on that surface.

Example:

Press a pencil from its ends between the palms. The palm pressing the tip feels much more pain than the palm pressing its blunt end. We can push a drawing pin into a wooden board by pressing it by our thumb. It is because the force we apply on the drawing pin is confined just at a very small area under its sharp tip. A drawing pin with a blunt tip would be very difficult to push into the board due to the large area of its tip. In these examples, we find that the effectiveness of a small force is increased if the effective area of the force is reduced. The area of the tip of pencil or that of the nail is very small and hence increases the effectiveness of the force. The quantity that depends upon the force and increases with decrease in the area on which force is acting is called pressure.
Effect of area on pressure is shown in figure below:

Figure: A Drawing Pin With Sh art Tii) Enters E $\frac{\text { vis }}{\mathbf{l}} \frac{\mathrm{W}}{\mathrm{W}}$ en proser On - ooden
(Do you know Pg. \# 150)

YACUUM CLEANER

The fan in a vacuu ncleaner lowers air pressure in its bucket. The atmospheric air rushes
inte t gatrvile dust and dirt with it through its intake port. The dust and dirt particles are bocked by the filter while air escapes out as shown in the figure:

Q. 4 How do we suck juice with the help of a straw? (K.B+A.B)

Ans:

SUCKING A LIQUID WITH STRAW

When air is sucked through straw with its other end dipped in a liquid, the air pressure in the straw decreases. This causes the atmospheric pressure to push the liquid up the straw as shown in the figure:

7.3, 7.4 MULTIPLE CHOICE QUESTIONS

1. The force exerted perpendicularly on unit area of an object is called ($\boldsymbol{H} . \boldsymbol{B}$)
(A) Strain
(B) Constant
(C) Pressure
(D) $\mathrm{W}_{\mathrm{Sin}}$
2. The unit of pressure is: (K.B)
(A) Nm^{-2}

Pressuradepard inpon: (Pa
3. Pressurdepend upon: (K B
(A) Dersity
(Q) 17 em per a we
(B) Depth

Thelaw about pressure on the object is presented by: (K.B)
(A) Joule
(B) Pascal
(C) Newton
(D) Galileo
5. When temperature of the gas increases, gas pressure: (K.B)
(A) Increases
(B) Decreases
(C) Remains same
(D) None of abov
6. If quantity of the gas is increased in the rontainerth gas pessure ($B+B+C$)
(A) Increases
(i) Lecreases
(C) Remains same
(L) Nare of tabove
7. Pressure epend upon: (K B,
(B) Area
(A) Foree
(C) Iensth
(D) Both A\&B
(LHR 2013)

Thy nst unent used to measure atmospheric pressure (K.B)
(1) Coiorimeter
(B) Hypsometer
(C) Barometer
(D) None of
these
9. At sea level atmospheric pressure is: (K.B)
(LHR 2017)
(A) 10107 Pa
(B) 10300 Pa
(C) 101300 Pa
(D) 10107 Pa

7.5
 PRESSURE IN LIQUIDS
 LONG QUESTIONS

Q. 1 Derive an expression for Pressure in liquids. (K.B+U.B+A.B)

Ans:

PRESSURE IN LIQUIDS

Liquids exert pressure. The pressure of a liquid acts in all directions. If we take pressure sensor (a device that measures pressure) inside a liquid, then the pressure of the liquid varies with the depth of sensor.

Mathematical Derivation:

Consider a surface area \mathbf{A} in a liquid at a depth \mathbf{h} as shown in figure.

The length of the cylinder of liquid over this surface will be \mathbf{h}. The force acting on this surface will be the weight w of the liquid above this surface.
If ρ is the density of the liquid and m is mass of the liquid above the surface, then Mass of the liquid

Force acting on area A

$$
=m=(\mathrm{Axh}) \times \rho
$$

$$
=\mathrm{F}=\mathrm{w}=\mathrm{mg}
$$

$$
=\mathrm{Ah} \rho \mathrm{~g}
$$

As pressure
$=\mathrm{P}=\mathrm{F} / \mathrm{A}$

Therefors, Liquid pressure ot cuepth $h=\mathrm{P}=\mathrm{P}$ gh
The above equation gives the pressine at a depth h in a liquid of density ρ. It show that its pressure in elia lic incleises with depth.
Cdylus ou:
Pressure of the liquid increases with:

- Increase in depth of the liquid (h)
- Increase in the density of the liquid (ρ)
- Increases in the value of gravitational acceleration (g)
Q. 2 State and explain Pascal's law. (K.B)
(GRW 2014,2017, LHR 2017, RWP 2017)
Ans:

PASCAL'S LAW

Introduction:

An external force applied on the surface of a liquid increases the liquid pressure at the surface of the liquid. This increase in liquid pressure is transmitted equally in all direction and to the walls of the container in which it is filled this result is called Pascal's law.

Statement:

According to Pascal's law:
"Pressure applied at any point of a liquid enclosed in a container, is transmitted without loss to all other parts of the liquid."

Explanation:

Pascal's law can be demonstrated with the help of a glass vessel having holes all over its surface as shown in figure.

111 nogiass vessel with water. Push the piston. The water rushes out of the holes in the vessel with the same pressure. The force applied on the piston exerts pressure on water. This pressure is transmitted equally throughout the liquid in all directions.
Applications of Pascal's Law:

In general, Pascal's law holds good for fluids both for liquids as well as gases. Pascal's law finds numerous applications in our daily life such as automobiles hydraulic br system, hydraulic jack, hydraulic press and other hydraulic machine
Q. 3 What is hydraulic press? Write its const ution and worling (R.E + U.B $+A$. (1))

Ans:

HYRR LCPRESS

Introdat on:

Hydraut. pros is-a mechite That orks on Pascal's law. It is used to compress heavy cotton Eles for ease in transertation and storing.
Goptruction:
It const of two cylinders of different cross sectional areas which are fitted with pistons of cross - sectional area \mathbf{a} and \mathbf{A} as shown in the figure:

Working:

The object is to be compressed is placed over the piston of large cross - sectional area \mathbf{A}. The Force $\mathbf{F}_{\mathbf{1}}$ is applied on the piston of small cross - sectional area \mathbf{a}. The pressure \mathbf{P} produced by small piston is transmitted equally through the liquid and acts on the on the large piston and a force $\mathbf{F}_{\mathbf{2}}$ acts on \mathbf{A} which is much larger than $\mathbf{F}_{\mathbf{1}}$.

Mathematical Form:

Pressure on piston of small area a is given by,

$$
\mathrm{P}=\frac{F_{1}}{a}
$$

By applying Pascal's law, the pressure on the larger piston of anea A viit be san as an the small piston.

$$
\mathrm{P}=\frac{F}{A}
$$

By contaping the ubove eq ations, we hav

Fore Muliper:

$$
\therefore \quad F_{2}=F_{1} \times \frac{A}{a}
$$

Since the ratio $\frac{\mathbf{A}}{a}$ is greater than $\mathbf{1}$, hence the force $\mathbf{F}_{\mathbf{2}}$ acts on the larger piston is greater than the force $\mathbf{F}_{\mathbf{1}}$ on the smaller piston. Hydraulic systems working in this way are man as force multipliers.
Q. 4 Explain the braking system of the ehiclds. (K.R)

Ans:
BRTKING SSTMMOHELCES
The brakes of cars, buses etc. wor ci the principiedf ascal's law. In such a type of brakes yli er brake peda. is nushed, it exents pressure on the master cylinder, which increases the tiquid piessure in the cylinder. The liquid pressure is transmitted equally thro:gh the liquid in the metal pipes to all the pistons of other cylinders. Due to the inctease pressure of the liquid pressure, the pistons in the cylinder mover outwards De esing the brakes pad with brake drums. The force of friction between frictions the brake pads and the brake drum stops the wheels as shown in the figure:

7.5 SHORT QUESTIONS

Q. 1 On what factors pressure of the liquids depends? (K.B)

Ans: Given on Page \#257
Q. 2 How is a syringe filled with a liquid? (K.B)

Ans:

FILLING A SYRINGE

The piston of the syringe is pulled out. This lowers the pressure in the cylinder. The liquid from the bottle enters into the piston through the needle as shown in figure:

Q. 3 Write some applications of Pascal's law. (A.B)

Ans: \quad APPLICATIONS OF PASCAL'S LAW
In general, Pascal's law holds good for fluids both for liquids as u el as gas es. Pascles
 system, hydraulic jack, hy fizulic pees and other bydra uic macline.
Q. 4 Why hydraulic press is called as 1 prac nultipler. (K. B)

Ans:

HORC MULITDIER

We knew oorkinequat on of hydratic press

$$
\frac{F_{1}}{\mathrm{a}}=\frac{F_{2}}{A}
$$

So

$$
\mathrm{F}_{2}=\mathrm{F}_{1} \times \frac{\mathrm{A}}{\mathrm{a}}
$$

Since the ratio $\frac{A}{a}$ is greater than $\mathbf{1}$, hence the force $\mathbf{F}_{\mathbf{2}}$ acts on the larger piston is greater than the force \mathbf{F}_{1} on the smaller piston. Hydraulic systems working in this way are known as force multipliers.

EXAMLE 7.2 (U.B)

In a hydraulic press, a force of 100 N is applied on the piston of a pump of crosssectional area $0.01 \mathrm{~m}^{2}$. Find the force that compresses a cotton bale placed on larger piston of cross-sectional area $1 \mathrm{~m}^{2}$.
Solution:
Given Data:
Force applied on the piston of the pump $=\mathrm{F}_{1}=100 \mathrm{~N}$
Cross sectional area of small piston $=\mathrm{a}=0.01 \mathrm{~m}^{2}$
Cross sectional area of large piston $=\mathrm{A}=1 \mathrm{~m}^{2}$
To Find:
Force that compresses cotton $=\mathrm{F}_{2}=$?
Calculations:
We know working equation of hydraulic press

So

$$
\begin{aligned}
& \frac{F_{1}}{\mathrm{a}}=\frac{F_{2}}{A} \\
& \mathrm{~F}_{2}=\mathrm{F}_{1} \times \frac{\mathrm{A}}{\mathrm{a}}
\end{aligned}
$$

Putting values

$$
F_{2}=(100) \frac{1}{0\left(\tilde{v}_{1}\right)}=1 \rho 000 \mathrm{~N}
$$

Result:

Hence the hydradic press vil comp ress the wale with a torce of 10000 N .

45MMITESEFHOCE QUESTIONS

1. If a Tiody is at a d ppth of ' h ' from the liquid surface of density ' ρ ', then the pressure (${ }^{3}$) onthat budy is: (K.B)
(1) $P=w / t$
(B) $\mathrm{P}=\rho \mathrm{gV}$
(C) $\mathrm{P}=\rho \mathrm{gh}$
(D) $\mathrm{P}=\mathrm{F} / \mathrm{a}$
2. Hydraulic press is based on: (K.B)
(B) Pascal law
(A) Joule's law
(D) Young's Modulus
(C) Newton's law
(GRW 2014)
3. If pressure is exerted on a liquid, liquid transmits it: (K.B)
(A) Variably
(B) Equally
(C) In all directions
(D) Both B \& C
4. Hydraulic brake works on the principle of (K.B)
(A) Hydraulic press (B) Iascal av
(C) Joule's law (I) Both A \& B
7.6
7.7

LONG QUESTIONS

Q. 1 Staie and explain Archimedes Principle. (K.B+U.B+A.B)
(GRW 2015)

ARCHIMEDES PRINCIPLE

Introduction:

More than two thousand years ago, the Greek scientist, Archimedes noticed the upthrust force of the liquid.
Upthrust Force:
There is an upward force which acts on an object kept inside a liquid. As a result an apparent loss of weight is observed in the object. This upward force acting on the object is called the up thrust of the liquid.

Statement:

According to Archimedes principle
"When object is totally or partially immersed in a liquid, an upthrust act on it equal to the weight of the liquid it displaces."

Explanation:

Consider a solid cylinder of cross - sectional area \mathbf{A} and height h immersed in a liquid as shown in figure:

Figure 7. 8: ypthenst on a body
innersed in a liquid is equal to the
-weight of the liquid displaced
Iet 1_{1} and h_{2} be the depth of the top and bottom surtaces of the cylinder respectively irdal tie surface of the liquid.
inen
$\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{h}$
If P_{1} and P_{2} are the liquid pressures at the depth h_{1} and h_{2} respectively and ρ is its density, then

$$
\begin{aligned}
& \mathrm{P}_{1}=\rho \mathrm{g} \mathrm{~h}_{1} \\
& \mathrm{P}_{2}=\rho \mathrm{g} \mathrm{~h}_{2}
\end{aligned}
$$

Let the force F_{1} is exerted at the cylinder top by the liquid dae $t r \mathrm{Pressm} \mathrm{P}_{1}$ and the force F_{2} is exerted at the bottom of the cylinder by the liquid due to P_{2}.
So

F_{1} and F_{2} are acting nn/ite qp posite faces of the cy linder. Therefore, the net force F will be $F_{2}-$ F_{1} in the inection pin F_{2}. The net force ton the cylinder is called the upthrust of the liquid. Therefore,
F. $\mathrm{F}_{1}=\rho g \mathrm{~h}_{2} \mathrm{~A}-\rho \mathrm{g} \mathrm{h}_{1} \mathrm{~A}$

$$
=\rho \mathrm{g} \mathrm{~A}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)
$$

or upthrust of liquid $=\rho \mathrm{g}$ Ah
or $\quad=\rho \mathrm{g} \mathrm{V}$
Here $\mathbf{A h}$ is the volume \mathbf{V} of the cylinder and equal to the volume of the liquid displaced by the cylinder. Therefore, $\boldsymbol{\rho} \mathbf{g} \mathbf{V}$ is the weight of the liquid displaced
We know $m=\rho V$
So upthrust of liquid $=\mathrm{mg}=\mathrm{w}$
Conclusion:

The above equation shows that an upthrust acts on the body immersed in a liquid and is equal to the weight of liquid displaced, which is Archimedes principle.

Interesting Story about Archimedes and the crown :(Interesting information)

Archimedes, a Greek mathematician, lived in Syracuse (now in Sicily) around 250 BCE. He made important discoveries about levers and liquids, but is probably best remembered for his clever solution to a problem set him by the king of Syracuse.
The king had given his goldsmith some gold to make a crown. But when the crown was delivered, the king was suspicious. Perhaps the goldsmith had stolen some of the gold and mixed in cheaper silver instead. The king asked Archimedes to test the crown. Archimedes knew that the crown was the correct mass. He also knew that silver was less dense than gold. So a crown with silver in it would have a greater volume than one day, so the story goes, Archimedes noticed the rise in water level. Here was the answer! He was so excited that he leapt from his bath and ran naked through the streets, shouting "Eureka!" which means "I have found it!"
Later, Archimedes put the crown in a container of water and measured therise in le et Then he did the same with an equal mass of pure gold. The rise in lever different So the crown could not have been pure gold.
Q. 2 How density of an object can be ound $\frac{k-j}{}$ Arch meder priac ple? K. $\bar{b}+U . B+A . B$) Ans:

Archimed princinle is als helpiul to deternine the density of an object.
The rat. in the raights of a pody vith all equal volume of the liquid is the same as in their densities
Let Lher sity fferobject $=\mathrm{D}$
Dersitio of the liquid

$$
=\rho
$$

Weight of the object

$$
=\mathrm{w}_{1}
$$

Weight of equal volume of liquid $\quad=w=w_{1}-w_{2}$
Here w_{2} is the weight of solid in liquid. According to Archimedes principle, w_{2} is less than its actual weight w_{1} by an amount w .
$\frac{\mathrm{D}}{\rho}=\frac{\mathrm{w}_{1}}{\mathrm{w}}$

Thus, forcing the weight of he solid ir and $\mathbf{w}_{\mathbf{1}}$ and its weight in water $\mathbf{w}_{\mathbf{2}}$, we can calculate the density of it he solid by using above equation and following procedure as shown in the fig:

(a)
(b)

Figure: (a) Weighing Solid in Air
(b) Weighing Solid in Water And Measuring Water displaced By the Solid

Q. 3 Explain the Principle of Flotation. (K.B)

Ans:
PRINCIPLE OF FLOATATION

Introduction:

An object sinks if its weight is greater than the up thrust force acting on it. An object floats if its weight is equal or less than the up thrust. When an object floats in a fluid, the up thrust acting on it is equal to the weight of the object. In case of floating object, the object may be partially immersed. The up thrust is always equal to the weight of the fluid displaced by the object. This is principle of flotation.

Statement:

According to principle of flotation:
"A floating object displaces a fluid having weight equal to weight of the object."

Applications:

Archimedes principle is applicable on liquids as well as gases ye ting nugerves applications of this principle in daily life.

Understanding of Floating Objet ts

A wooden block floats on water It is because the weight of an equal volume of water is greater them the weight of the bio ck. Accord ding to the principle of flotation, a body floats (if it displaces math equal to the weight of the body when it is partially or comple el y in messed in water.

Design of Ship and Boats.

Ships: an de at are designed on the same principle of floatation. They carry passengers and goads over water. It would sink in water if its weight including the weight of its passengers and goods becomes greater than the upthrust of water.

Working of Submarines:

A submarine can travel over as well as under water. It also works on the principle of floatation. It floats over water when the weight of the water equal to its volume is greater
than its weight. Under this condition, it is similar to a ship and remains partially above water level. It has a system of tanks which can be filled with and emptied from sea water When these tanks are filled with sea water, the weight of the subming incre: Aes. As soon as its weight becomes greater than the upthrust it dives 180 water and remann under water. To come up on the sufface, the ten are cippied trom sea vater.

7.ghringanhaygindas

Q. 1 State Amempedes nrimcip. e. K, B,

Ans: Given ox.page 262
Q. 2 Define Jpthrust.
(GRW 2017)
Ans.

UPTHRUST

Destivion:
"There is an upward force which acts on an object kept inside a liquid. As a result an apparent loss of weight is observed in the object. This upward force acting on the object is called the up thrust of the liquid."
Upthrust of the liquid is also called as "Buoyant force"

Example:

An air filled balloon immediately shoots up to the surface when released under water. The same would happen if a piece of wood is released under water all of this is because of upthrust of the liquid acting on bodies.
Q. 3 State Principle of floatation. (K.B)

Ans: Given on Page \# 264
Q. 4 Why does a heavy wooden log float on water while a needle sinks?

Ans: A NEEDLE SINKS
A wooden block floats on water. It is because the weight of an equal volume of water is greater than the weight of the block. According to the principle of floatation, a body floats if it displaces water equal to the weight of the body when it is partially or completely immersed in water while a needle sinks because upthrust force acting on it is less than its weight.

EXAMPLE 7.3

A wooden cube of sides 10 cm each has been dipped completely in water. Calculate the upthurst of water acting on it. (U.B+A.B)

Solution:

Given Data:
Leng th of a side $=1=100 \mathrm{~m}=0.1 \mathrm{~m}$
V) une worder dube $=V=1 .=(0.1)^{3}=1 \times 10^{-3} \mathrm{~m}^{3}$

Pensity or mater $=0=\int 0 a n \mathrm{gm}^{-3}$

To Eind:

pthest of water $=\mathrm{F}=$?
Cakculations:
We know

$$
\text { Upthrust }=\rho \mathrm{g} \mathrm{~V}
$$

Putting values

$$
\begin{aligned}
\text { Upthrust } & =(1000)(10)\left(1 \times 10^{-3}\right) \\
& =10 \mathrm{~N}
\end{aligned}
$$

Result:

Hence, the upthurst of water actin onster wodencube will be ill

The waight of metat spom in ai- i. 2. 1 S . Its weight in water is 0.42 N . Find its density $(6) B-1.2$.

Solnion:

Diven (ata:
Weight of the metal spoon in air $=\mathrm{W}_{1}=0.48 \mathrm{~N}$
Weight of the metal spoon in water $=\mathrm{W}_{2}=0.42 \mathrm{~N}$
Density of water $=\rho=1000 \mathrm{kgm}^{-3}$

To Find:

Density of spoon $=\mathrm{D}=$?

Calculations:

We know

$$
\begin{aligned}
& \frac{D}{\rho}=\frac{w_{1}}{w} \\
& D=\frac{w_{1}}{w} \rho \\
& D=\frac{w_{1}}{w_{1}-w_{2}} \rho
\end{aligned}
$$

Putting values

$$
\mathrm{D}=\frac{0.48}{0.48-0.42} 1000=8000 \mathrm{kgm}^{-3}
$$

Results:

Hence, the density of the material of the spoon will be $8000 \mathrm{kgm}^{-3}$.

EXAMPLE 7.5

An empty meteorological balloon weighs 80 N . It is fillod witl 10 canic meres (hii hydrogen. How much maximum content the bal og cam lit hesice is ow weight? The density of hydrogen io $0.09 \mathrm{~km}-3$ and the dersity of air s $13 \mathrm{kgm}^{-2}$. (U.B+A.B) Solution:

Given (1)

wi.git of the ba.lom $=\mathrm{V}=80 \mathrm{~N}$
Vol me of hy diogen $=V=10 \mathrm{~m}^{3}$
Lens ty di nydrogen $=\rho_{1}=0.09 \mathrm{kgm}^{-3}$
Density of air $=\rho_{2}=1.3 \mathrm{kgm}^{-3}$

To Find:

Weight of hydrogen $=\mathrm{w}_{1}=$?
Weight of contents $=\mathrm{w}_{2}=$?

Calculations:

First we find upthrust of air
$\mathrm{F}=$ weight of air displaced
Upthrust $=\rho_{2} \mathrm{~g}$ V
Putting values
Upthrust $=(1.3)(10)(10)=130 \mathrm{~N}$
(N) w we finc weight or hydrogen
$w_{1}=A_{1} g$ V
Putting valie: -
$O_{1}=\left\{\begin{array}{c}0.09)(10)(10)\end{array}\right.$
$\mathrm{w}_{1}=9 \mathrm{~N}$
Total weight lifted equal to upthrust $=\mathrm{w}+\mathrm{w}_{1}+\mathrm{w}_{2}$
$130=80 \mathrm{~N}+9 \mathrm{~N}+\mathrm{w}_{2}$
Hence
$\mathrm{w}_{2}=41 \mathrm{~N}$

Result:

Hence, the maximum weight of 41 N can be lifted by the balloon in addition to its own weight.

EXAMPLE 7.6

A barge, 40 metre long and 8 metre broad, whose sides are vertical, floats partially loaded in water. If $\mathbf{1 2 5 0 0 0} \mathbf{N}$ of cargo is added, how many metres will it sink? (U.B+A.B)

Solution:

Given Data:

Area of barge $=A=40 \mathrm{~m} \times 8 \mathrm{~m}=320 \mathrm{~m}^{2}$
Additional load to carry $=\mathrm{w}=125000 \mathrm{~N}$

To Find:

Depth to which barge will sink $=\mathrm{h}=$?

Calculations:

We know
Increased upthrust F of water must be equal to the additional load. Hence
Upthrust $=\mathrm{F}=\mathrm{w}=\rho \mathrm{g} \mathrm{V}$

Putting ya uts

$\sqrt{3} \mathrm{k}$ nork

Hence

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Ah} \\
& \mathrm{~h}=\frac{\mathrm{V}}{\mathrm{~A}}
\end{aligned}
$$

Putting values

$$
\mathrm{h}=\frac{12.5}{320}=0.4 \mathrm{~m} \text { or } 4 \mathrm{~cm}
$$

Result:

Q. 1 Which on principle tells doout the fivating and sinking of objects: (K.B)
(A) Pascal slau
(B) Newton's law
(C) A rchimeded principle
(D) None of them
2.2 Due to pressure difference on an object, an upward force acts on the object known as: (K.B)
(A) Weight
(B) Buoyant force
(C) Stress
(D) All of above
Q. 3 Buoyant force is equal to: (K.B)
(A) Volume of displaced liquid
(B) Density displaced liquid
(C) Weight displaced liquid
(D) All of above
Q. 4 The object will float on the liquid surface when: (U.B)
(A) $\mathrm{W}>\mathrm{F}$
(B) $\mathrm{W}<\mathrm{F}$
(C) $\mathrm{W}=\mathrm{F}$
(D) None of above
Q. 5 The object will sink in the liquid surface when: (U.B)
(A) $\mathrm{W}>\mathrm{F}$
(B) $\mathrm{W}<\mathrm{F}$
(C) $\mathrm{W}=\mathrm{F}$
(D) None of above
Q. 6 Submarine works on the principle of: (K.B)
(A) Pascal's law
(B) Newton's law
(C) Archimedes principle
(D) None of them

Q. 1 State and explain the Hooke's Law. (K. B+ll.B+A.R)

Introduction:

It has beer obseryethat ceformation in length volume or shape of a body depends upon the stress ath in me body. The mathematical relationship between stress and strain was firs of all formulale $15 y$ Hooke in the form of a law.
setment.
Acercing to Hook's law:
"The strain produced in a body by the stress applied to it is directly proportional to the stress within the elastic limit of the body."
Mathematical Formula:

Stress $=$ constant x strain
Or $\quad \frac{\text { Stress }}{\text { Strain }}=$ constant

Applications:

Hooke's law is applicable to all kinds of deformation and all types of matter i.e. solids, liquids or gases within certain limit. This limit tells the maximum stress that can be safely applied on a body without causing permanent deformation in its length, volume or shape.

Elastic Limit:

It is a maximum value of elasticity within which a body recovers to original length, volume or shape after deforming force is removed. This value of elasticity is called the elastic limit.
When a stress crosses this limit, called the elastic limit, a body is permanently deformed and is unable to restore its original state after the stress is removed as shown in the figure:

Extension $(x) \longrightarrow$
Figure: Graph Between Force And Extension
Q. 2 Define Young's Modulus and derive its shathemaical for mula. (I HR 䀏15. (OW 2017)

Ans:

(K.B+U.B+A.B)

Definition:

Or
"Tre rat o bsires and strain is a constant within the elastic limit, this constant is called the Io:ngs Modulus."
Unit:
SI unit of Young's Modulus is Newton per square meter ($\mathrm{N} \mathrm{m}^{-2}$)
Mathematical Form:

Consider a long bar of length Lo and cross - sectional area \mathbf{A}. Let an external force \mathbf{F} equal to weight \mathbf{w} stretches it such that the stretched length becomes \mathbf{L}.
Mathematically,
Young's modulus $=\mathrm{Y}=$ Stress/Tensile stram
Let $\Delta \mathrm{L}$ be the change in length of the rod ther

Since

Anci] Tersile strdir $=\frac{L_{L_{o}}}{L_{o}}=\Delta \mathrm{L} / \mathrm{L}_{0}$
As roung's modulus $=\mathrm{Y}=$ Stress $/$ Tensile strain
So

$$
\mathrm{Y}=\frac{F}{A} \times \frac{L_{o}}{\Delta L}
$$

Therefore,

$$
\mathrm{Y}=\frac{F \times L_{o}}{A \times \Delta L}
$$

Examples:

Young's Modulus of some common materials is as follows:

- Diamond $1120 \times 10^{9} \mathrm{Nm}^{2}$
- Glass $\quad 60 \times 10^{9} \mathrm{Nm}^{2}$
- Lead $\quad 16 \times 10^{9} \mathrm{Nm}^{2}$

7.8,7.9 SHORT QUESTIONS

Q. 1 Define Elasticity. (K.B)

(LHR 2017)
Ans:

ELASTICITY

The property of a body to restore its original size and shape as the deforming force ceases to act is called elasticity.

Example:

When we stretch a rubber with a small force and then release that force the rubber attains it original size and shape due to elasticity.
Q. 2 Define deforming force. (K.B)
(GRW 2017)
Ans:

DEFORMING FORCE

Definition:

"The applied force that changes shape, length or volume of a substance is called the deforming force"

Unit:

Being a force its unit is newton (N)

Example:

A pictorial concept of deforming froe and lasticity is siven below

Q. 3 What is stress? (K.B)
(LHR 2016,GRW 2017) Ans:

Definition:

"The deforming force acting on unit area at the surface of a body is called stress."

Mathematical Form:

If a force F is applied on an area A of an object, the stress is) mathematically defined as:
Stress $=\frac{F}{A}$
Unit:
In System International, the unit of stress is Nm^{-2}.
Q. 4 What is strain? (K.B)

Ans:

STRAIN

Definition:

"A stress can produce a change in shape, length or volume of an object. A comparison of change caused by the stress with the original length, volume or shape is called the strain."

Tensile Strain:

If a stress produces a change in length of an object then the strain is called tensile strain.
Therefore,
Tensile Strain $=\frac{\text { Change in Length }}{\text { Original Length }}$
Unit:
As the strain is a ratio between two similar juan tit ie.

A stree. Wire 1 m long and cress sectional area $5 \times 10^{-5} \mathrm{~m}^{2}$ is stretched through 1 mm by a fo ct of 1000 iN. Find young modulus of the wire. (U.B+A.B)
Solution:
given at
Initial length of steel wire $=\mathrm{L}_{\mathrm{o}}=1 \mathrm{~m}$
Cross sectional area of the steel wire $=\mathrm{A}=5 \times 10^{-5} \mathrm{~m}^{2}$
Extension or change in length $=\Delta \mathrm{L}=1 \mathrm{~mm}=0.001 \mathrm{~m}$
Force producing extension $=F=10000 \mathrm{~N}$

To Find:

Young modulus of the wire $=\mathrm{Y}=$?

Calculations:

As we know
$\mathrm{Y}=\frac{\mathrm{FL}_{\mathrm{o}}}{\mathrm{A} \Delta \mathrm{L}}$
Putting the values

Result:
Hence, the Young modulus of steel will be $2 \times 10^{11} \mathrm{Nm}^{2}$.

7.8,7.9 MULTIPLE CHOICE QUESTIONS

1. The force that acts on unit area of an object and thus changes its shape or size: (K.B)
(A) Stress
(B) Strain
(C) Yong's Modulus
(D) Elastic limit
2. In system international, the unit of stress is: (K.B)
(A) Nm^{-2}
(B) Nm^{-1}
(C) Nm
(D) None of above
3. The ratio of change in length to the original length is: (K.B)
(A) Stress
(B) Tensile strain
(C) Young's Modulus
(D) Elastic limit
4. When stress is increased, the strain also goes on: $(K . B+U . B)$
(LHR 2016)
(A) Decreasing
(B) Increasing
(C) Constant
(D) All of above
5. The law about stress and strain is presented by: (K.B)
(A) Hook
(B) Newton
(C) Joule
(D) Archimedes
6. According to Hooke's law, within the elastic limit stress and strain has proportion: (K.B)
(A) Inverse
(B) Direct
(C) Same
(D) None of abov
7. The ratio of stress and tensile strain is: (K.IP)
(A) Variable
(C) Non-uniform
(B) Pascal: Law (D) Non of above
8. The unit of Young's modulusis: (k.b)
(A) Nm^{-2}
(B) Nm^{-1}
(c) Fm
(D) None of above

Whet is young modulus of Aluminum? (K.B)
(Table 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $190 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$
10. What is young modulus of bone? (K.B)
(Table 7.2 Pg. \# 162)
(A) $0.02 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $190 \times 10^{9} \mathrm{Nm}^{-2}$
D) $200 \times 10^{9} \mathrm{Nm}$
11. What is young modulus of brass (K.B)
(fable 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) 9×10
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$
12. What is yong mocul is of hickei? (K.B)
(Table 7.2 Pg. \# 162)
(A) 0×10 河
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $200 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$
13. What is young modulus of Rubber? (K.B)
(Table 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $190 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $0.0007 \times 10^{9} \mathrm{Nm}^{-2}$
14. What is young modulus of Tungsten? (K.B)
(Table 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $400 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$
15. What is young modulus of wood (Parallel gain)? (K.B)
(Table 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $10 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $190 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$
16. What is young modulus of wood (Parallel gain)? (K.B)
(Table 7.2 Pg. \# 162)
(A) $70 \times 10^{9} \mathrm{Nm}^{-2}$
(B) $110 \times 10^{9} \mathrm{Nm}^{-2}$
(C) $1 \times 10^{9} \mathrm{Nm}^{-2}$
(D) $200 \times 10^{9} \mathrm{Nm}^{-2}$

MCQ'S ANSWER KEY (TOPIC WISE)

7.1 KINETIC MOLECULAR MODEL OF MATTER

7.2 DENSITY

1	2	3	4	5	6	7	8	9	10	11	12
C	C	B	B	A	B	C	C	B			5
13	14	15	16	17	18	19	20	1			2
C	A	B	D	A	D	A	C		A	B	C

TEXT BOOK EXERCISE
 MULTIPLE CHOICE QUESTIONS

7.1 Encircle the correct answer from the given choices.
i. In which of the following state, molecules do not leave their position: (LHR 2015, 2016)
(a) solid
(b) liquid
(c) gas
(d) plasma
ii. Which of the substances is the lightest one? (K.B)
(LHR 2016)
(a) copper
(b) mercury
(c) aluminum
(d) lead
(K.B)

SI unit of pressure is Pascal, which is equal to? $(\boldsymbol{U} . \boldsymbol{B}+\boldsymbol{K} . \boldsymbol{B})$
(a) $10^{-4} \mathrm{Nm}^{-2}$
(b) $1 \mathrm{Nm}^{-2}$
(c) $10^{2} \mathrm{Nm}^{-2}$
(d) $10^{3} \mathrm{Nm}^{-2}$
iv. What should be the approximate length of a glass tube to construct a water barometer? (K.B)
(a) 0.5 m
(b) 1 m
(c) 2.5 m
(d) 11 m
v. According to Archimedes, upthrust is equal to: (K.B)
(LHR 2014, GRW 2015, 2016)
(a) weight of displace body
(b) volume of displaced body
(c) mass of displaced liquid
(d) none of these
vi. The density of a substance can be found with the help of: (К.В)
(a) Pascal's law
(c) Archimedes principle
(b) Hooke
vii. According to Hooke's lav: (K.B)
(a) stress x strain $=$ constant
(c) stre(In)stress $=$ constant

		iii	iv	v	vi	vii
a	c	b	d	d	c	c

7.2 How kinetic molecular model is helpful in differentiating various states of matter?
(K.B+U.B+A.B)

Ans: See Q. 1 Long Question TOPIC 7.1 Given on Page \#246

7.3 Does there exist a fourth state of matter? What is that? (K.B)

Ans: Given on Page \# 246
7.4 What is meant by a density? What is its SI unit? (K.B+A.B)

Ans: Given on Page \# 248
7.5 Can we use a hydrometer tp measure thedersity of nill? (K B $A B$)

Ans: \quad YIMOMETLR

Yes, wecin use Hydrometcr of reasu e density ef milk. Hydrometer is a glass tube with a scale w-ked or cits stem ang heavv veight in the bottom. It is partially immersed in a fluid, the c'ensity of wlich sto be measured. One type of hydrometer is used to measure the e nernirdtion of acid in a battery. It is called acid meter.

7.6 Define the term pressure. (K.B)

Ans: Given on Page \#254
7.7 Show that atmosphere exert pressure. (K.B)

Ans: Long question \#1 TOPIC 7.3 Given on Page \#251
7.8 It is easy to remove air from a balloon but it is very difficult to remove air from a glass bottle. Why? (K.B)
Ans:

REMOVAL OF AIR

Because the atmospheric pressure acts more easily on balloon as compared to glass bottle, so emptying air is easier from balloon than glass bottle.
7.9 What is barometer? (K.B+A.B)

Ans:

BAROMETER

The instrument used to measure atmospheric nressure is calleutarongte. Ong of the simple barometers is mercury barometer. tconsist. of andiss thom long losed at one end as shown in the figure:

7.10 Ans:

Why water is not suitable to be used in a barometer? (K.B+U.B)
Mercury is 13.6 times denser than water. Atmospheric pressure san hote vert cal colunn of water about 13.6 times the height of neelcury cctimin at place. This, at or tevel, vertical height of water colymn voold be D. $16 \mathrm{~m} \times 136=1034 \mathrm{~m}$. Thus, a glass tube more than 10 m long is requiraim make wate aroncte: tha is difficult to handle practically
7.11 What mates a sucke pressen an snouth wall sticks to it? (K.B+U.B)

Ans:

SUCKEX PRESSED ON A WALL

viser a sucke s. pressed on a smooth surface, the air pressure below it becomes very nall Que to the displaced air) as compared to the air pressure above it. Therefore, it sticks with the smooth surface as shown in the figure:

7.12 Why does the atmospheric pressure vary with height? (K.B)

Ans: \quad VARIATION IN ATMOSPHERIC PRESSURE
As we go high in the atmosphere, the density of the air becomes low. Due to this reason, atmospheric pressure decreases as we go high.
7.13 What does it mean when the atmospheric pressure at place fall suddenly? (K.B)

Ans: SUDDEN FALL OF ATMOSPHERIC PRESSURE
A sudden fall in atmospheric pressure means there will be a storm, rain and typhoon to occur in coming few hours.
7.14 What changes are expected in weather if the barometer reading shows a sudden increase?

Ans:

SUDDEN INCREASE IN READING

A sudden increase in atmospheric pressure means that it will soon followed by a decrease in the atmospheric pressure indicating poor weather ahead.
7.15 State Pascal's law. (K.B)

Ans: Given on Page \#258
7.16 Explain the working of hydraulic nress. $\boldsymbol{C} \cdot B+A . F$

Ans: Given on Page \#259
7.17 What is meant by elastici y : (K.B)

Ans: Given on Phge \#270
7.18 State Awhin edepprinciple? $K B .1 . B$)

Ans: Given ol Pase 非 62
7.10 That is up thist? Explain the principle of floatation. (K.B+A.B)

Ans: Given on Page \#262
Explain how a submarine moves up the water surface and down into water. (K.B+U.B)

Ans: Given on Page \#264
7.21 Why does a piece of stone sink in water but a ship with huge weights floats? (K.B)

Ans:

A STONE SINKS

The upthrust force on stone is much smaller than its weight beeaus beight of thewher displaced under stone is very small. While the ships ane desioned in st colvay (1)igit of the water displaced by them is gre.te than heir weigh. So upth rust force in case of ships is greater than their weights. so siopsion on the surface ot water.
7.22 What is tocke's lay? What is nean by olasic I:AIt? (K.B+A.B+U.B)

Ans: Given oc Page $\# 26$ \%
7.23 Take a rubber bind. Construct a balance of your own using a rubber band. Check is if culacy by wediging various objects. (K.B+U.B)

CONSTRUCTING A BALANCE

1ake a rubber band hang it with a hook. Then pointer is attached at the lower end of it with scale in front of pointer. Different known weights are suspended one by one at the lower end of the rubber band. Mark the pointer positions for each known weight. It is called calibration of scale for weight measurements. This makes a balance for weight measurement as shown in the figure:

NUMERICAL PROBLEMS(U.B+A.B)

7.1 A wooden block measuring $40 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm}$ has a mass of 850 g . find the density of the wood.

Solution:

Given Data:

Volume of wooden block $=\mathrm{v}=40 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm}=2000 \mathrm{~cm}^{3}=2 \times 10^{-3} \mathrm{~m}^{3}$
Mass of wooden block $=\mathrm{m}=850 \mathrm{~g}=0.85 \mathrm{~kg}$

To Find:

Density of wooden block $=\mathrm{d}=$?
Calculations:
As we know that

Density
(Density $=0.425 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
OR
Density $=425 \mathrm{~kg} \mathrm{~m}^{-3}$
Result:
Hence, the density of wooden block will be $425 \mathrm{kgm}^{-3}$.

7.2 How much would be the volume of the ice formed by freezing 1 litre of water?

Solution:

Given Data:

Volume of water $=\mathrm{V}_{1}=1$ litre
1 litre of water $=1 \mathrm{~kg}$
Mass of water $=1 \mathrm{~kg}$
Density of water $=109 u_{i n g} n^{-3}$

To Find

$$
\text { Volume of ide on fredzing }=\mathrm{V}_{2}=\text { ? }
$$

Celcilation:
isc: (1t)
Density of ice $=1000 \times 0.92$

$$
=920 \mathrm{kgm}^{-3}
$$

Volume of ice $=\frac{\text { mass }}{\text { Density }}$
Volume of ice $=\frac{1000}{920}$

$$
=1.09 \text { litre }
$$

Result:

Hence, the volume of ice will be 1.09 litre.
7.3 (i) Calculate the volume of the following objects.
(i) An iron sphere of mass 5 kg , the density of iron is $8200 \mathrm{kgm}^{-3}$.
(ii) 200 g of lead shot having density $11300 \mathrm{kgm}^{-3}$.
(iii)A gold bar of mass 0.2 kg . the density of gold is $19300 \mathrm{kgm}^{-3}$.
(i) An iron sphere of mass 5 kg , the density of iron is $8200 \mathrm{kgm}^{-3}$.

Solution:

Given Data:
Mass of iron sphere $=m=5 \mathrm{~kg}$
Density of iron $=d=8200 \mathrm{kgm}^{-3}$
To Find:
Volume of iron sphere $=\mathrm{V}=$?
Calculations:
As we know that
Density $=\frac{\text { Mass }}{\text { Volume }}$
Volume $=$ Mass
By putt ng the val res, we have

olume $=0.00069 \mathrm{~m}^{3}$
OR
Volume $=6.9 \times 10^{-4} \mathrm{~m}^{3}$

Volume of iron sphere $=6.9 \times 10^{-4} \mathrm{~m}^{3}$
(ii) 200 g of lead shot having density $11300 \mathrm{kgm}^{-3}$.

Solution:

Given Data:

Mass of lead shot $=\mathrm{m}=2 \pi \mathrm{~g}=0 \mathrm{ng}$
Density of lead $=\mathrm{d}=11300 \mathrm{~kg} \mathrm{n}^{-2}$
To Find:
Volume of lead srot $=\mathrm{v}=$?
Calculaticrs:
As re kiove that
Density $=\frac{\text { Mass }}{\text { Volume }}$
Volume $=\frac{\text { Mass }}{\text { Density }}$
By putting the values, we have
Volume $=\frac{0.2}{11300}$
Volume $=0.000017699 \mathrm{~m}^{3}$
OR Volume $=1.77 \times 10^{-5} \mathrm{~m}^{3}$
Volume of lead shot $=1.77 \times 10^{-5}$
(iii) A gold bar of mass 0.2 kg . The density of gold is $19300 \mathrm{kgm}^{-3}$.
(LHR 2016)

Solution:

Given Data:

Mass of gold $\mathrm{bar}=\mathrm{m}=0.2 \mathrm{~kg}$
Density of gold $=\mathrm{d}=19300 \mathrm{kgm}^{-3}$
To Find:
Volume of gold bar $=\mathrm{v}=$?

Calculations:

As we know that

> Density $=\frac{\text { Mass }}{\text { Volume }}$
> Volume $=\frac{\text { Mass }}{\text { Density }}-\quad$ By putting the values, we have

Volume $=\frac{0.2}{19300}$
Volume $=0.00001036 \mathrm{~m}^{3}$
OR Volume $=1.04 \times 1 T^{-5} \mathrm{~m}^{3}$
Volvme of gold har $=1 \mathbf{0} \times 10.5$

Result:

meace.
The volume of iron sphere will be $6.9 \times 10^{-4} \mathrm{~m}^{3}$
The volume of lead shot will be $1.77 \times 10^{-5} \mathrm{~m}^{3}$
The volume of gold bar will be $1.04 \times 10^{-5} \mathrm{~m}^{3}$
7.4 The density of air is $1.3 \mathrm{kgm}^{-3}$. Find the mass of air in a room measuring 8 mx m m m .

Solution:

Given Data:

Density of air $=d=1.3 \mathrm{kgm}^{-3}$
Volume of air $=v=8 \mathrm{mx5} \mathrm{~m} \times 4 \mathrm{~m}=65 \mathrm{~m}$
To Find:
Mass of $2 \mathrm{ir}=\mathrm{rr}=$?
Calculetions:
As Me kiow tha
L) esisily $=\frac{\text { Mass }}{\text { Volume }}$

So
Mass = density x volume
By putting the values, we have
Mass $=1.3 \times 160$
Mass $=208 \mathrm{~kg}$
Result:
Hence, the mass of air will be 208 kg
7.5 A student passes her palm by her thumb with a force of 75 N . How much would be the pressure under her thumb having contact area $1.5 \mathrm{~cm}^{2}$?
Solution:
Given Data:
Force exerted by student $=\mathrm{F}=75 \mathrm{~N}$
Contact area $=\mathrm{A}=1.5 \mathrm{~cm}^{2}=1.5 \times 10^{-4} \mathrm{~m}^{2}$
To Find:
Pressure under the thumb $=\mathrm{P}=$?

Calculations:

As we know that
$\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}$
By putting the values, we have
$\mathrm{P}=\frac{75}{1.5 \times 10^{-4}}$
$\mathrm{P}=50 \times 10^{4} \mathrm{Nm}^{-2}$
$\mathrm{P}=5 \times 10^{5} \mathrm{Nm}^{-2}$
Result:

7.6 The head of the pin i squate of side 10 mm . find the pressure on it due to a force Gf 20 N .
(GRW 2014)
Shaim.

Given Data:

Force applied $=\mathrm{F}=20 \mathrm{~N}$
Side of head of pin $=\mathrm{L}=10 \mathrm{~mm}=10 \times 10^{-3} \mathrm{~m}$

Area of head of pin $=\mathrm{A}=\mathrm{L} \times \mathrm{L}=10 \times 10^{-3} \mathrm{~m} \times 10 \times 10^{-3} \mathrm{~m}$

$$
=100 \times 10^{-6} \mathrm{~m}^{2}=1 \times 10^{-4} \mathrm{~m}^{2}
$$

To Find:

Pressure exerted by head of pin $=\mathrm{P}=$?

Calculations:

As we know that

$\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}} \mathrm{B}$
By putting
$\mathrm{g}=\mathrm{ad}$
10^{-4}

$\mathrm{P}=20 \times 10^{4} \mathrm{Nm}^{-2}$
$\mathrm{P}=2 \times 10^{5} \mathrm{Nm}-2$

Result:

Hence, the pressure exerted by head of pin will be $2 \times 10^{5} \mathrm{Nm}^{-2}$.
7.7 A uniform rectangular block of wood $20 \mathrm{~cm} \times 7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ and of mass 1000 g stands on a horizontal surface with its longest edge vertical. Find
(i) The pressure exerted by the block on the surface
(ii) Density of the wood

Solution:

Given Data:

Mass of wooden block $=\mathrm{m}=1000 \mathrm{~g}=1 \mathrm{~kg}$
Volume of wooden block $=\mathrm{V}=20 \mathrm{~cm} \times 7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}=0.001125 \mathrm{~m}^{3}$ or 1.125×10^{-3} Area of wooden block $=\mathrm{A}=7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}=0.005625 \mathrm{~m}^{2}$ or $5.625 \times 10^{-3} \mathrm{~m}^{2}$

To Find:

(i) The pressure exerted by the block on the surface $=\mathrm{P}=$?

Density of wood $=\mathrm{d}=$?

Calculations:

As we know that
$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
By putting the values, we have
$\mathrm{V}=20 \mathrm{~cm} \times 7.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}=1125 \mathrm{~cm}^{3}=0.001125 \mathrm{~m}^{3}$
Density $=\frac{\text { Mass }}{\text { Volume }}$
By putting the values, we ha e
Densit $\because=\frac{1}{0.0 \pi 125}$
Density $=89889 \mathrm{gm} \mathrm{m}^{3}=889 \mathrm{gm}$
Ref sit of wed $=889 \mathrm{kgm}^{-3}$
As we know that
$\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}$
By putting the values, we have
$\mathrm{P}=\frac{10}{0.005625}$
$\mathrm{P}=1778 \mathrm{Nm}^{-2}$
The pressure exerted by the bleci on tle riace $=17 / 8 \mathrm{Nm}^{-2}$

Result:

Henee the ressure exe ted by hlock on the surface will be $1778 \mathbf{N m}^{-2}$ and density wooc vill be 889 kgm .

78 A cabe of of 5 cm side and mass 306 g , has a cavity inside it. If the density of the class is $2.55 \mathrm{gcm}^{-3}$. Find the volume of the cavity.

Solution:

Given Data:

Length of side of glass cube $=\mathrm{L}=5 \mathrm{~cm}$
Volume of glass cube $=\mathrm{v}=\mathrm{L}^{3}=(5 \mathrm{~cm})^{3}=125 \mathrm{~cm}^{3}$
$=125 \times 10^{-6} \mathrm{~m}^{3}=1.25 \times 10^{-4} \mathrm{~m}^{3}$
Mass of cube $=\mathrm{m}=306 \mathrm{~g}=0.306 \mathrm{~kg}=3.06 \times 10^{-1} \mathrm{~kg}$
Density of glass $=\mathrm{d}=2.25 \mathrm{gcm}^{-3}=2.55 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
To Find:
Volume of cavity inside the glass cube $=\mathrm{V}=$?

Calculations:

Volume without cavity $=1.25 \times 10^{-4} \mathrm{~m}^{3}$
Volume with cavity $=$ mass/density

$$
\begin{aligned}
& =\left(3.06 \times 10^{-1}\right) /\left(2.55 \times 10^{3}\right) \\
& =1.20 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

Volume of cavity $=$ volume without cavity - volume with cavity

$$
=1.25 \times 10^{-4} \mathrm{~m}^{3}-1.20 \times 10^{-4} \mathrm{~m}^{3}
$$

$$
=0.05 \times 10^{-4} \mathrm{~m}^{3}
$$

$$
=5 \times 10^{-6} \mathrm{~m}^{3} \text { or } 5 \mathrm{~cm}^{3}
$$

Result:

Hence, the volume of cavity inside the glass cube will be $5 \mathbf{c m}^{3}$.
7.9 An object has weight 18 N in air. Its weight is found to be 11.4 N when immenoor (iin water. Calculate its density. Can you guess the material of the ol ject?
Solution:

Given Data:

Weight of ohject in air $=w=18 / \mathrm{N}$
Weigh (o) Pbjectim vater $=w_{2}=1.4$ IN
Density or vacr $=\mathrm{p}_{\mathrm{w}}=10 \mathrm{Cogm}$
Gravitat or al aleleration $=\mathrm{g}=10 \mathrm{~ms}^{-2}$
Welshtofequal volume of water $=\mathrm{w}=\mathrm{w}_{1}-\mathrm{w}_{2}=18 \mathrm{~N}-11.4 \mathrm{~N}=6.6 \mathrm{~N}$
To rind:
Density of material $=\mathrm{D}_{\mathrm{m}}=$?
Name of material =?

Calculations:

As we know that
$\frac{\mathrm{D}}{\rho}=\frac{\mathrm{w}_{1}}{\mathrm{w}}$
By putting the value, we hive
$\frac{\mathrm{D}}{1000}=18$
$\mathrm{D}=18000$
D) $=2 \% 27 \mathrm{Kgm}^{-3}$
result:
Hence, the density of material is $2727 \mathrm{Kgm}^{-} 3$. As we know that density of aluminum is approximately equal to the density calculated above. So, the material will be aluminum.
7.10 A solid block of wood of density $0.6 \mathrm{gcm}^{-3}$ weighs 3.06 N in air. Determine:
(i) Volume of the block
(ii) The volume of block immersed when placed freely in a liquid of density $0.9 \mathrm{gcm}^{-3}$.

Solution:

Given Data:

Density of wooden block $\quad=\mathrm{d}=0.6 \mathrm{gcm}^{-3}$
Weight of the wooden block
Density of liquid

$$
\begin{aligned}
& =\mathrm{d}=0.0 \mathrm{gcm} \\
& =\mathrm{w}=3.06 \mathrm{~N}
\end{aligned}
$$

To Find:
Volume of the wooden block $=\mathrm{V}_{1}=$?
Volume of block when immersed in liquid $=\mathrm{V}_{2}=$?

Calculations:

As we know that
Volume $=$ mass $/$ densit
$\mathrm{V}_{1}=0.306 /\left(0.6 \times 10^{3}\right) \quad=0.51 \times 10^{-3} \mathrm{~m}^{3}$ or $510 \mathrm{~cm}^{3}$
Volume of the wooden block $=510 \mathrm{~cm}^{3}$
As we also know that
Upward thrust = weight of the liquid displaced
Weight $=10 \mathrm{x}$ volume x density
$3.06=10 \mathrm{x}$ volume $\mathrm{x} 0.9 \mathrm{y} 10^{3}$
Volume $=3.06 /\left(9 \times 10^{3}\right)$
$V_{2}=00034 \mathrm{~m}^{3} 03 \mathrm{c} 0 \mathrm{~cm}^{3}$
Volurne of 1 lipch wher inmersed in liquid $340 \mathrm{~cm}^{3}$
Result:
Hence, the volume of the wooden block will be 510 cm 3 and the volume of block when immersed in liquid will be $34 \mathrm{~cm}^{3}$.
7.11 The diameter of the piston of hydraulic press is $\mathbf{3 0} \mathbf{~ c m}$. How much force is required to lift a car weighing 20000 N on its piston, if the diameter of the piston of the polis 3 cm

Solution:

Given Data:

Pi. meter of the Discos- hydraulic press $=\mathrm{D}=30 \mathrm{~cm}=0.3 \mathrm{~m}$
Cia. netter of the piston of pump $=\mathrm{d}=3 \mathrm{~cm}=0.03 \mathrm{~m}$
Weight of the car lifted by hydraulic press $=\mathrm{w}=\mathrm{F}_{2}=20000 \mathrm{~N}$

To Find:

Force applied on piston of pump $=\mathrm{F}_{1}=$?
Area of piston $=A=2 \pi R^{2}=2 \times 3.14 \times(0.15)^{2}$
$\mathrm{A}=0.1413 \mathrm{~m}^{2}$
Weight of car =w $=\mathrm{F}_{2}=20000 \mathrm{~N}$
Diameter of piston $=\mathrm{d}=3 \mathrm{~cm}$
Radius of the piston $=r=\frac{\mathrm{d}}{2}=1.5 \mathrm{~cm}=0.015 \mathrm{~m}$
Calculations: Area of the piston $=\mathrm{a}=2 \pi \mathrm{r}^{2}=2 \times 3.14 \times(0.015)^{2}$
$\mathrm{a}=1.1413 \times 10^{-3} \mathrm{~m}^{2}$
Force $=\mathrm{F}_{1}=$?
$\frac{\mathrm{F}_{1}}{\mathrm{a}}=\frac{\mathrm{F}_{2}}{\mathrm{~A}}$
$\mathrm{F}_{1}=20000 \times \frac{1.413 \times 10^{-3}}{0.1413}$
$\mathrm{F}_{1}=200 \mathrm{~N}$

Result:

Hence, the force applied on the piston of pump wi be 200

 of 4000 . Find the young regulus or the wire. The length of the wire is $\mathbf{2 m}$.

Solution:

Length of the wire $=L_{o}=2 \mathrm{~m}$
Area of steel wire $=\mathrm{A}=2 \times 10^{-5} \mathrm{~m}^{2}$
Increase in length of wire $=\Delta \mathrm{L}=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$

Force applied $=\mathrm{F}=4000 \mathrm{~N}$

To Find:

Young's modulus of wire $=\mathrm{Y}=$?

Calculations:

As we haw that
$\mathrm{Y}=\frac{\mathrm{F} \times 1}{\mathrm{~A} \times \Delta \mathrm{t}}$
3y nuting the values, we have
$Y=\frac{4000 \times 2}{2 \times 10^{-5} \times 2 \times 10^{-3}}$
$\mathrm{Y}=\frac{2000}{10^{-5} \times 10^{-3}}$
$\mathrm{Y}=2000 \times 10^{8} \mathrm{Nm}^{-2}=2 \times 10^{3} \times 10^{8} \mathrm{Nm}^{-2}$
$\mathrm{Y}=2 \times 10^{11} \mathrm{Nm}^{-2}$

Result:

$$
\text { Hence, the Young's modulus of wire will be } 2 \times 10^{11} \mathrm{Nm}^{-2}
$$

SELF TEST

Time: 40 min.
M: 1 ks .25
Q. 1 Four possible answers $(A),(B),(C) \&(L)$ to gat qaest on ar, giren. Rarik the correct answer.

1. At sea laven, the atmospheric pressure is about:
($6 \times 1=6$)
(A) $10,220 \mathrm{~Pa}$
(B) 101300 N
(C) 101.300 Pa
(D) 1000 Pa
roang's mosulus of steel in Nm^{-2} is:
(A) 70
(B) 110
(C) 200
(D) 400
2. Unit of strain is:
(A) Nm
(B) Nm^{2}
(C) Nm^{-2}
(D) No Unit
3. $\quad 1$ litre is equal to:
(A) $10^{-3} \mathrm{~m}^{3}$
(B) $10^{-6} \mathrm{~m}^{3}$
(C) $10^{3} \mathrm{~m}^{3}$
(D) $10^{2} \mathrm{~m}^{3}$
4. Young modulus is equal to:
(A) $\frac{F L o}{A \Delta L}$
(B) $\rho g h$
(C) Weight of displaced water
(D) F/A
5. If baro meter reading suddenly falls it means:
(A) Pleasant weather ahead
(B) Poor weather ahead
(C) Stormy ahead
(D) Rainy weather ahead
Q. 2 Give short answers to following questions.
i. Why water is not suitable for use, in place of mercury in barometer?
ii. The weight of metal spoon in air is 0.48 N its weight in water is 0.42 N ; Find its density and also name the type of metal.
iii. Show elastic limit by drawing a grapin between force and extension.
iv. Why does a needle sink while a laze voocel loe fipats?
v. Why do we feel greater pressipe ingle the ocen-as compaed to fresh water of sanye drphs
Q. 3 Answer the folloving questions in detail.
ir ha do voumean by pressure of liquids? Also prove that $\mathrm{P}=\rho \mathrm{gh}$.
b) What would be the volume of ice formed by freezing 1 litre of water?

Note:
Parents or guardians can conduct this test in their supervision in order to check the skill of students.

