

TEMPERATURE AND HEAT

THERMOMETER LONGAUESTGTH
Q. 1 What is thermometer? Explaint dife el types. (K $B+\mathbb{B}+A \underline{R})$

Ans:
TMERMOMITERR
"The instu nert phicl is used tom mosure the temperature is called a thermometer" Thermomeri Material:
. The mater at in is used in thermometer for measuring temperature is called thermometric naterial."
Some substances have property that changes with temperature. Substance that show change with temperature can be used as thermometric material. For example some substances expand on heating, some change their colours, some change their electric resistance etc. Nearly all the substances expand on heating liquids also expand on heating and are suitable as thermometric materials.
Common thermometers are generally made using some suitable liquid as thermometric material.
Properties of Thermometric Properties:
A thermometric liquid should have the following properties:

- It should be visible
- It should have uniform thermal expansion
- It should have a low freezing point
- It should have high boiling point
- It should not wet glass
- It should be a good conductor of heat
- It should have small specific heat capacity

Liquid - In - glass Thermometer:

A liquid - in - glass thermometer has a bulb with a long capillary tube of uniform and fine bore. A suitable liquid is filled in the bulb. When the bulb contacts a hot object, the liquid in it expands and rises in the tube. The glass stem of a thermometer is thick and acts as a cylindrical lens. This makes it easy to see the liquid level in the glass tube as shown in the figure:

Mercurthe Ees Thermonetric 1 aterial:
Mercury fieezer at - $39^{\circ} \mathrm{C}$ and ${ }^{\circ}$ ooils at $357^{\circ} \mathrm{C}$. It has all the thermometric properties listed ahove. Thus meleury is one of the most suitable thermometric materials. Mercury - in y ass 品ermometers are widely used in laboratories, clinics and houses to measure temperatures in range from $-10^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
Reference Points:
(GRW 2017)
A thermometer has a scale on its stem. This scale has two fixed points.

Lower Fixed Point:

The lower fixed point is marked to show the position of liquid in the themmeter. \% it is placed in ice.

Upper Fixed Point:

The upper fixed point is marked to show/the pusition of liquid in hy thermometer when it is placed in steam at star dard peessere above boiling vater.

Scales of einneratare:

The distance betreen two reference points is divided in different divisions. A scale is marked on the thermonew. The temperature of the body in contact with the thermometer cante reid on that scale.
Iypes of Temperature Scale:
(LHR 2017)
There are three types of temperature scale, which are as follows:

- Celsius scale or centigrade scale
- Fahrenheit scale
- Kelvin scale

Fahrenheit and centigrade or Celsius scales are used to measure temperatures in ordinary life while Kelvin scale is in practice for scientific purposes. Various scales of temperature are shown below:

Celsius Scale:

On Celsius scale, for water the interval between lower and upper fixed point is divilec into $\mathbf{1 0 0}$ equal divisions. The lower fixed point is marked as $-0^{0} \mathbf{C}$ and the uppe-fixed point is marked as $100{ }^{\circ} \mathrm{C}$.
Fahrenheit Scale:
On Fahrenheit scale, the interya/bet veeh lower and under IIxed points is divided into 180 equal divisions. The cower ixed peint is rharked as $32{ }^{\circ} \mathbf{F}$ and the upper fixed point is mark au as 212%
Kelon ncale:
$1 n \$ 1$ units. the unit of temperature is Kelvin (K) and its scale is called Kelvin scale of te mperature. The interval between the lower and upper fixed points is divided into $\mathbf{1 0 0}$ equal divisions. Thus a change in $\mathbf{1}^{\circ} \mathrm{C}$ is equal to a change of $\mathbf{1} \mathbf{K}$. the lower fixed point on the scale corresponds to $\mathbf{2 7 3} \mathrm{K}$ and the upper fixed point is referred as $\mathbf{3 7 3} \mathrm{K}$. The zero on this scale is called the absolute zero and is equal to $-\mathbf{2 7 3}{ }^{\circ} \mathrm{C}$.

Scale Conversion Formula:

Following are scale conversion formulae

From Celsius to Kelvin Scale:

The temperature \mathbf{T} on Kelvin scale can be Otained iy adding 273 ir the t mpe ature C on Celsius scale thus

From Kolvii to Celstusscalc.

The termeratue on Cel ius scaie calve tound by subtracting 273 from the temperature in Kelvin scale. Thus

$$
C=\mathrm{T}(\mathrm{~K})-273
$$

Irern Celsius to Fahrenheit Scale:
Since 100 divisions on Celsius scale are equal to 180 divisions on Fahrenheit scale. Therefore, each division on Celsius scale is equal to 1.8 divisions on Fahrenheit scale. Moreover, $0^{\circ} \mathrm{C}$ corresponds to $32^{\circ} \mathrm{F}$.

$$
\mathrm{F}=1.8 \mathrm{C}+32
$$

Here F is the temperature on Fahrenheit scale and C is the temperature on Celsius scale
Q. 2 Define and explain internal energy of a body. (K.B)

Ans: INTERNAL ENERGY

Introduction:

Heat is called as the energy in transit. Once heat enters a body, it becomes its internal energy and no longer exists as heat energy.

Definition:

The sum of kinetic energy and potential energy associated with the atoms, molecules and particles of a body is called its internal energy.

Dependence:

Internal energy of a body depends on many factors such as the mass of the body, kinetic and potential energies of molecules etc. Kinetic energy of an atom or molecule is due to its motion which depends upon the temperature. Potential energy of atoms or molecules is the stored energy due to intermolecular forces.

Q. 3 Interesting information:

Ans: Nearly all liquids expand slightly when heated. This property is used in liquid-in-glass thermometers, which are normally filled with alcohol or mercury.

Sensitivity:

Some thermometers are more sensitive to temperature change that cthers. The thread liquid moves further. The diagrams on the righthow tuoe vith etects the sensitivity. The narrower the tube, the higiter the sensit ity of the the mometer.
Mercury expands less than alsoo for shame volve and same temperature rise). So a mercu yifer nometer must have naripwer tobe than an alcohol thermometer to give the same semsitivity?

Rarge:

Vivary frelze at $-39^{\circ} \mathrm{C}$; alcohol freeze at a much lower temperature, $-115^{\circ} \mathrm{C}$. However, sone mercury thermometers have an upper limit of $500^{\circ} \mathrm{C}$, which is much higher than that of any alcohol thermometer:

Responsiveness:

Some thermometers respond more quickly to a change in temperature than others. A thermometers with a larger bulb, or thicker glass round the bulb, is ins responser because it takes longer for the alcohol or mercury to reach hr temperature of the surroundings.

Linearity:

Although mercury and alcohol thermoneers in aust agree at the filed points, they do not exactly OgRe at gut er temperatures. That is because the expansion of one liquid is not quite linear comp. Ped with the other.
However; with ir the $0-100^{\circ} \mathrm{C}$ range, the disagreement is very small.

8.1, 8.2 SHORT QUESTIONS

Q. 1 Define temperature and write its unit. (K.B)

(LHR 2014, GRW 2015)

Definition:

"Degree of coldness or hotness of the body is a measure of its temperature"
Quantity:
Temperature is a base and scalar quantity.
Unit:
SI unit of temperature is kelvin (K)
Q. 2 Define heat. Write its unit. (K.B)
(LHR 2014)
Ans:

HEAT

Definition:

"Heat is the energy that is transferred from one body to the other in thermal contact with each other as a result of the difference of temperature"

Quantity:

Heat is a derived and scalar quantity.

Unit:

SI unit of heat is Joule (J)
Q. 3 Define thermal contact (K.B)

Ans:
THERMAL CONTACT
"Such a contact of bodies in which exchange of heat takes place is called thermal contact."

Example:

To store ice in summer, people wrap it with sloth or keen it in voaken boy or in harpies flask. In this way, they avoid the thermal contact of ce with it; hot surroundings otherwise ice will soon melt hwav,
Q. 4 Define thermal equilibrium n. (K. B,

Ans:

THERMAL EQUILIBRIUM

"The sate of the rna contact at which two bodies attain same temperature and no exchange of heat t. kex place is called thermal equilibrium."
19annd:
When you place a cup of hot tea or water in a room, it cools down gradually. It stops cooling as it reaches the room temperature. Thus, temperature determines the direction of flow of heat. Heat flows from a hot body to a cold body until thermal equilibrium is reached.
O. 5 What happens when we touch a hot bodv? (K.B)

Ans:
TOUCH OF A HOT BODY
When we touch a hot body the thermal energy flows from hot body to bory 1 is flow of heat continue until both the bodies become at same tenpe atare i.e. Themint equilibrium.
Q. 6 Define thermometer. (K.R)

WEDMEECE
"The instrment which is uselfomeas re the tinperatare is called a thermometer" Thernornety Material:
"The materic that used mermometer for measuring temperature is called thermorneiric inaterial.'
Sonil: substances have property that changes with temperature. Substance that show dlan je outith temperature can be used as thermometric material. Common thermometers a) e generally made using some suitable liquid as thermometric material.

Define absolute zero. (K.B)
Ans:
Absolute zero is the point at which the fundamental particles of nature have minimal vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion.
By international agreement, absolute zero is defined as precisely; 0 K on the Kelvin scale, which is a thermodynamic (absolute) temperature scale; and -273.15 degrees Celsius on the Celsius scale.
Q. 8 What is difference between Thermistor and Thermocouple thermometer. (C.B) Ans:

Difference

Thermistor Thermometer	Thermocouple Thermometer
The thermistor is a device which becomes a much better electrical conductor when its temperature rises. This means that a higher current flows from the battery, causing a higher reading on the meter.	A thermocouple is robust, quick to respond to temperature change, has a wide range $\left(-200{ }^{\circ} \mathrm{C}\right.$ to $\left.1100{ }^{\circ} \mathrm{C}\right)$, and can be linked to other electrical circuits or a computer. Two different metals are joined to form two junctions. A temperature difference between the junctions causes a tiny voltage which makes a current flow. The greater the temperature difference, the greater the current.

Q. 9 What is clinical thermometer? (K.B)

Ans:

CLINICAL THERMOMETER

A clinical thermometer is used to-measure the tompratue of hurnan ond.s. It has a narrow range from $35^{\circ} \mathrm{C}$ t. $42^{\circ} \mathrm{C}$. heas a constriction that prevents the mercury to return. Thus, its reading does not change puti, eset.
Q. 10 Write dor n the conversipins of the nometerscales. (K.B+U.B) (LHR 2013, GRW 2014, 2015)

Ans: \quad ONVERSIONS OF SCALES
Following are scale cor version formulae.
Conters on Ceisius (centigrade) to Fahrenheit scale:

$$
\mathrm{T}_{\mathrm{F}}=\frac{9}{5} \times \mathrm{T}_{\mathrm{c}}+32
$$

Conversion of Fahrenheit to Celsius scale:

$$
\mathrm{T}_{\mathrm{c}}=\frac{5}{9}\left(\mathrm{~T}_{\mathrm{F}}-32\right)
$$

Relationship between Kelvin and Celsiu siales:

Q. 11 Every thermometer makes yos sone p-pcry of hate.igl that varies with temperatrir. Name tie poperty used in:
(Mini exercise Pg. \# 170)
(a) Striz therinoneter:
(b) Mercury ther n neters

Ans

PROPERTIES OF MATERIALS

(a) I) (1) ip hermometers, colour variation is used.
(0) Uniform thermal expansion of liquids is used in mercury thermometer.

EXAMPLE 8.1 (A.B+U.B)

What will be the temperature on Kelvin scale of temperature, when it is $20{ }^{\circ} \mathrm{C}$ on Celsius scale?

Solution:

Given Data:

Temperature on Celsius scale $=\mathrm{C}=20^{\circ} \mathrm{C}$
To Find:
Temperature on Kelvin scale $=\mathrm{T}(\mathrm{K})=20^{\circ} \mathrm{C}$
Calculations:
We know

$$
\mathrm{T}(\mathrm{~K})=273+\mathrm{C}
$$

Putting values

$$
\mathrm{T}(\mathrm{~K})=273+20=293 \mathrm{~K}
$$

Result:
$20^{\circ} \mathrm{C}$ on Celsius scale is equal to 293 K .
EXAMPLE 8.2 (A.B+U.B)
Change 300K on Kelvin scale into Celsius scale of temperature.
Solution:

Given Data:

Temperature on Kelvin scale $=\mathrm{T}(\mathrm{K})=300 \mathrm{~K}$

To Find:

Temperature on Celsius scato $=\mathrm{C}=$?

Calculations:

We know
$T(\mathrm{~N})=27$.
AIC $C=T(F)-27$.
Putting alues
Bes.lt:
300 K is equal to $27^{\circ} \mathrm{C}$.

EXAMPLE 8.3 (A.B+U.B)

Convert $50^{\circ} \mathrm{C}$ on Celsius scale into Fahrenheit temperature scalc.

Solution:

Given Data:

Temperature on $\mathrm{C} \in \operatorname{Tsi}$ us sca $-=-5=-50 \mathrm{~d}$
To Find:
Terpperatare on Faa enkelis sale-F - ?
Calcule tions:
We lnco

$$
\mathrm{F}=(1.8 \times \mathrm{C}+32)
$$

Putting values

$$
\begin{aligned}
& \mathrm{F}=(1.8 \times 50+32) \\
& \mathrm{F}=122^{\circ} \mathrm{F}
\end{aligned}
$$

Result:
$50^{\circ} \mathrm{C}$ on Celsius scale is equal to $122^{\circ} \mathrm{F}$.

EXAMPLE 8.4 (A.B+U.B)

Convert $100{ }^{\circ} \mathrm{F}$ into the temperature of Celsius scale.
(GRW 2017)
Solution:
Given Data:
Temperature on Fahrenheit scale $=\mathrm{F}=100^{\circ} \mathrm{F}$
To Find:
Temperature on Celsius scale $=\mathrm{C}=$?
Calculations:
We know
$1.8 \mathrm{C}=\mathrm{F}-32$
Putting values

$$
\begin{aligned}
& 1.8 \mathrm{C}=100-32 \\
& 1.8 \mathrm{C}=68 \\
& \mathrm{C}=\frac{68}{1.8}=37.8^{\circ} \mathrm{C}
\end{aligned}
$$

Results:
$100^{\circ} \mathrm{F}$ is equal to $.7 .8^{\circ} \mathrm{C}$

1. Temperat re the: $K B$
(A) $\grave{\Gamma}$ Iass contilined by the body
(B) Force of the molecules of body
(CNDegre of tiotness or coldness of the body
(D) none of above

The SI unit of temperature is: (K.B)
(A) ${ }^{\circ} \mathrm{C}$
(B) ${ }^{\circ} \mathrm{F}$
(C) K
(D) ${ }^{\circ} \mathrm{K}$
3. Temperature of $\mathbf{3 0}{ }^{\circ} \mathrm{C}$ in Fahrenheit is: (K.B)
(A) $86^{\circ} \mathrm{F}$
(B) $80{ }^{\circ} \mathrm{F}$
(C) $30^{\circ} \mathrm{F}$
(D) $90^{\circ} \mathrm{F}$
4. Human normal body temperature of $37^{\circ} \mathrm{C}$ in Fahrenheit is. (K.l.)
(A) $98.6{ }^{\circ} \mathrm{F}$
(C) $100{ }^{\circ} \mathrm{F}$
(B) $)^{5} \mathrm{~F}$
(I) Nore br abo e
5. Boiling point of water in farrerheit is: K. .
(A) $10 \sigma^{-2}$
(B) $273^{\circ} \mathrm{F}$
(C) 212%
(D) $373{ }^{\circ} \mathrm{F}$
6. Celsius equivatent of OI iv: (N.B)
(A) $-273{ }^{\circ} \mathrm{C}$
(B) $-459.4^{\circ} \mathrm{C}$
(c) ${ }^{\circ} \mathrm{C}$
(D) $100{ }^{\circ} \mathrm{C}$

Eahrenheit equivalent of 0 K is: (K.B)
(A) $-273{ }^{\circ} \mathrm{F}$
(B) $-459.4^{\circ} \mathrm{F}$
(C) $0^{\circ} \mathrm{F}$
(D) $100{ }^{\circ} \mathrm{F}$
8. Heat is a type of: (K.B)
(A) Kinetic energy
(B) Potential energy
(C) Mechanical energy
(D) None of above
9. Which of the following substances have greater average kinetic energy of its molecules at $10^{\circ} \mathrm{C}$? (K.B)
(A) Steel
(B) copper
(C) Water
(D) Mercury
10. Which flower is a natural thermometer? (K.B)
(A) Jasmine
(B) Rose
(C) Daisy
(D) Crocus
11. Crocus flower opens at: (K.B)
(A) $-273{ }^{\circ} \mathrm{C}$
(B) $-459.4^{\circ} \mathrm{C}$
(C) $0{ }^{\circ} \mathrm{C}$
(D) $23{ }^{\circ} \mathrm{C}$
12. The temperature in the Sun's core is: (K.B)
(A) $6000{ }^{\circ} \mathrm{C}$
(B) $15000000{ }^{\circ} \mathrm{C}$
(C) $2500{ }^{\circ} \mathrm{C}$
(D) $1580{ }^{\circ} \mathrm{C}$
13. The temperature in the Sun's surface is: (K.B)
(A) $6000{ }^{\circ} \mathrm{C}$
(B) $15000000{ }^{\circ} \mathrm{C}$
(C) $2500{ }^{\circ} \mathrm{C}$
(D) $1580{ }^{\circ} \mathrm{C}$
14. The temperature of the electric lamp is: (K.B)
(A) $6000{ }^{\circ} \mathrm{C}$
(B) $15000000{ }^{\circ} \mathrm{C}$
(C) $2500{ }^{\circ} \mathrm{C}$
(D) $1580{ }^{\circ} \mathrm{C}$
15. The temperature of the gas lamp is: (K.B)
(A) $6000{ }^{\circ} \mathrm{C}$
(C) $2500{ }^{\circ} \mathrm{C}$
(B) $15000000{ }^{\circ} \mathrm{C}$
(D) $15: 00^{\circ} \mathrm{C}$
16. The temperature of the toing wetor is: K. P)
(A) $100^{\circ} \mathrm{C}$
(C) 0 『
(B) $3^{\circ} \mathrm{C}$
17. The terperature norma humat Dody is: (K.B)
(A) $100^{\circ} \mathrm{C}$
(B) $37{ }^{\circ} \mathrm{C}$
(C, $)^{\circ} \mathrm{C}$
(D) $-18^{\circ} \mathrm{C}$

Whe cemperature of the freezing water is: (K.B)
(A) $100{ }^{\circ} \mathrm{C}$
(B) $37{ }^{\circ} \mathrm{C}$
(C) $0{ }^{\circ} \mathrm{C}$
(D) $-18^{\circ} \mathrm{C}$
19. The temperature of ice in freezer is: (K.B)
(A) $100{ }^{\circ} \mathrm{C}$
(B) $37{ }^{\circ} \mathrm{C}$
(C) $0{ }^{\circ} \mathrm{C}$
(D) $-18^{\circ} \mathrm{C}$
20. The temperature of liquid oxygen is: (K. (B)
8.3 (C) $0{ }^{\circ} \mathrm{C}$

sifgichy erg oapacix

HONGUESTIONS
Q. 1 hat is specitic neat? Explain with examples and derive its mathematical formula. (A. $\cdot B+C . B+A . B)$

Ans.

SPECIFIC HEAT CAPACITY

Definition:

"Specific heat of a substance is the amount of heat that is required to raise the temperature of $\mathbf{1 k g}$ mass of that substance through $\mathbf{1 K}$ ".
Formula:

$$
\mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{~m} \Delta \mathrm{~T}}
$$

Unit:

SI unit of specific heat capacity is $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.

Explanation:

Generally, when a body is heated, its temperature increases. Increase in the temperature of a body is found to be proportional to the amount of heat absorbed by it.
It has also been observed that the quantity of heat $\Delta \mathbf{Q}$ required to raise the temperature $\Delta \mathbf{T}$ of a body is proportional to the mass \mathbf{m} of the body.

Thus

$$
\Delta \mathrm{Q} \alpha \mathrm{~m} \Delta \mathrm{~T}
$$

or

$$
\Delta \mathrm{Q}=\mathrm{c} \mathrm{~m} \Delta \mathrm{~T}
$$

Here $\Delta \mathbf{Q}$ is the amount of heat absorbed by the body and \mathbf{c} is the constant of proportionality called the specific heat capacity or simply specific heat.

So

$$
\mathrm{c}=\frac{\Delta \mathrm{Q}}{\mathrm{~m} \Delta \mathrm{~T}}
$$

Examples:

Specific heat capacity of water is $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and specific heat canacity f dry $810 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

Introduction:

Specific heat of water is $4200 \sqrt{\mathrm{Kg}}{ }^{\top} \mathrm{K}{ }^{-1}$ ar d of dry coil ic about $810 \mathrm{skg}^{-1} \mathrm{~K}^{-1}$. As a result the teriperature of soil would inere ase five times more than the same mass of water by the samennount ir heat
Importenc:
Tafer his latge pecific heat capacity. For this reason, it is very useful in storing and -juvig thermal energy due to its high specific heat capacity.
Some roles of water due to its large specific heat are given below

Keeping a Moderate Temperature:

The temperature of land rises and falls more rapidly than that of the sua Hence, mes temperature variations from summer to winter are much smaller at piace rear the sea than land far away from the sea. So climate of the regions neai sea hore likeokazachi, remains moderate.
The presence of large water eservil suchas $1 . \mathrm{kes}$ anf sees thep the climate of nearby land moderate due to the latge heat capacity of these reservoirs.

Coolinesyst nointitombies:

The coolite system of the automobiles uses water to carry away unwanted thermal enefy. in al annoble, large amount of heat is produced by its engine due to which its denter@uic goes on increasing. The engine would cease unless it is not cooled down. Water circulating around the engine maintains the temperature. Water absorbs unwanted thermal energy of the engine and dissipates heat through its radiator as shown in the figure:

Water in Central Heating System:

In central heating systems hot water is used to carry thermal energy through pipes from boiler to radiators. Theses radiators are fixed inside the house at suitable places as shown in the figure:

Q. 2 Define heat capacity and derive its mathematical formula. (K.B+U.B+A.B)

Ans:

HEAT CAPACITY

Definition:

 one Kelvin (1K) increases in its t-mperame.'

Mathematical Form:

Thus, if fre emperatate at a boly ncreases thro then its seat capacity will te $\Delta Q \Delta \Delta$. putting the value of $\Delta \mathbf{Q}$, we get

Heat capacity $=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{T}}=\frac{\mathrm{mc} \Delta \mathrm{T}}{\Delta \mathrm{T}}$
Heat capacity $=\mathrm{mc}$
The above equation shows that heat capacity of a body is equal to the product of its mass of the body and its specific heat capacity.
Unit:
SI unit of heat capacity is JK^{-1}

Example:

Heat capacity of 5 kg of water is $\left(5 \mathrm{~kg} \mathrm{x} 4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right) 21000 \mathrm{Jkg}^{-1}$. That is 5 kg of water needs 21000 joules of heat for every 1 K rise in its temperature. Thus, larger is the quantity of a substance, larger will be its heat capacity.

8.3 SHORT QUESTIONS

Q. 1 Define specific heat capacity. Write its formula and unit. (K.B+U.B+A.B)
(GRW 2013, 2014, 2016 LHR 2015, 2017)
Ans: Given on Page \#296
Q. 2 Define heat capacity. Write its formula and unit. (K.B+U.B+A.B)
(GRW 2015)
Ans: Given on Page \# 298
Q. 3 How specific heat differs from heat capacity?
(Mini exercise Pg. \# 182)
Ans: Given on Page \# 296

EXAMPLE 8.5

A container has 2.5 litres of water at $20^{\circ} \mathrm{C}$. How much heat is required to boil the water? (U.B+A.B)
(LHR 2017)

Solution:

Given Data:

Volume of water $=\mathrm{V}=2.5$ litres
As 1 litre $=1 \mathrm{~kg}$ so
Mass of water $=\mathrm{m}=2.5 \mathrm{k}$
Specific heat of water $=\mathrm{c}=400 \mathrm{JJ-2} \mathrm{~J}^{-1} \times-\mathrm{x}^{-1}$
Initial temperature $=11_{1}=20^{\circ} \mathrm{C}$
Finall tamperature As water is poiling) $=\mathrm{T}_{2}=100^{\circ} \mathrm{C}$

To Fin :

Heat reaired to boil the water $=\Delta \mathrm{Q}=$?
Dencutions:
We know
Change in temperature $\Delta T=T_{2}-T_{1}$
Putting values
Change in temperature $\Delta \mathrm{T}=100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$

$$
=80^{\circ} \mathrm{C} \text { or } 80 \mathrm{~K}
$$

Now we find Heat required to boil the water

$$
\Delta Q=\mathrm{cm} \Delta T
$$

Putting values

$$
\Delta \mathrm{Q}=(42000,2.5)(\times 0)
$$

Result.

Hence, the hea iecuired to boil the water will be 84000 J or 840 kJ .

Ice is a (an): (K.B)
(A) Good conductor
(B) Bad conductor
(C) Perfect Conductor
(D) None
2. The quantity of heat that causes 1 K change in temperature in a substance of mass 1 Kg is called: ($\boldsymbol{K} . \boldsymbol{B}$)
(A) Specific heat
(B) Latent heat
(C) Heat of exchange
(D) None of above
3. Unit of specific heat is: (K.B)
(A) $\mathrm{Jkg}^{-1} \mathrm{~K}$
(B) JkgK^{-1}
(C) $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) J
4. Which of the following has highest specific heat? (K.B)
(A) Water
(B) Ice
(C) Mercury
(D) Alcohol
5. Specific heat of water is: (K.B)
(GRW 2013, 2014)
(A) $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $2500 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $3200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
6. Climate of regions near sea shore remains moderate due to: (K.B)
(A) Greater specific heat of water
(B) Less specific heat of water
(C) Low freezing point of water
(D) High boiling point of water
7. Cause of land and sea breeze is: (K.B)
(A) Greater specific heat of water
(B) Less specific heat of water
(C) Low freezing point of water
(D) High boiling point of water
8. The device used to measure of the specific heat of an object is: (K.B+A.B)
(A) Thermometer
(B) Burner
(C) Calorimeter
(D) Thermostat

9. Quantity of heat that changes one kilogran of a tr (lid int iquic iscaled.:(K.B)
(A) Specific heat
(C) Latent heat of vaporization
(B) Latont 1 eat offusion
10. The specin heat of atcond is: (K.B)
(A) $25 \mathrm{C}, \mathrm{H} / \mathrm{g} \cdot \mathrm{s}$
(B) $903 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $900 \mathrm{Jkg}^{-1} \mathrm{k}$
(D) $121 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
11. The pe ific hed of Aluminum is: (K.B)
1A) $250 \mathrm{KKg}^{-1} \mathrm{~K}^{-1}$
(B) $903 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(c) $900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $121 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
12. The specific heat of Bricks is: (K.B)
(A) $2500 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $903 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $121 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
13. The specific heat of Carbon is: (K.B)
(A) $2500 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $903 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $900 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $121 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
14. The specific heat of Clay is: (K.B)
(A) $920 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2010 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(i3 $337 / \mathrm{Jkg}^{1} \mathrm{~K}^{-1}$
(L) $840 \mathrm{~kg} \mathrm{~K}^{-1}$
15. The specic heat of Copper is: K. B)
(A) $92\left(\cdots \pi^{-1} \mathrm{~K}\right.$
(B) $387 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2010 \mathrm{JkJ}^{-1} \mathrm{k}^{-1}$
(D) $840 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
16. The pecific heat of Ether is: (K.B)
(A) $28 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $387 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2010 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $840 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
17. The specific heat of Glass is: (K.B)
(A) $920 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $387 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2010 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $840 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
18. The specific heat of Gold is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $790 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $470 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
19. The specific heat of Granite is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $790 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $470 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
20. The specific heat of Ice is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $790 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $470 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
21. The specific heat of Iron is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $790 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $470 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
22. The specific heat of Lead is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $138.6 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $835 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $235 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
23. The specific heat of Mercury is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $138.6 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $835 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $235 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
24. The specific heat of Sand is: (K.B)
(A) $128 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $835 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
25. The specific heat of Silver is: K / B)
(A) $1280 \cdot \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
(C) $8350 \mathrm{Kg}^{-1} \mathrm{~K}$
(B) $138.6 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $138.61 \mathrm{~g}^{-1 \ldots-1}$
26. The pecific heat of Soil (ary) is: (K.B)
(A) $810 . \mathrm{kg}^{-1}$
(B) $2016 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(v) $134.8 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $1760 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
27. The specific heat of Steam is: (K.B)
(A) $810 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $2016 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $134.8 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $1760 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
28. The specific heat of Tungsten is: (K.B)
(A) $810 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(B) $2016 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(C) $134.8 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) $1760 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
29. The specific heat of Turpentine is: (K.B)
(A) $810 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(3) $2016 . \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
(C) $134.8 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(L) 1,6) $\mathrm{Jk} \mathrm{g}^{-1} \mathrm{l}$
30. $4200 \mathrm{Jks}^{-1} \mathrm{~K}$ is the specife bear capacity of: K.D)
(A) Soil
(B) Water
(C) Zinc
(D) Ice
31. $385.1 \mathrm{Jkg}^{-1} \mathrm{l}^{-1}$ the specific heat capacity of: (K.B)
(A)S (II)
(B) Water
(C) Zinc
(D) Ice

8.4	CHANGE OF STATE
8.5	LATENT HEAT OF FUSION
8.6	LATENT HEAT OF VAPORIZATION

LONG QUESTIONS

Q. 1 Explain with an activity the change of states of matter. (K.B+U.B+A.B)

Ans:

STATES OF MATTER

Matter exists in three states:

- Solid
- Liquid
- Gas

Matter can be changed from one state to another. For such a change to occur, thermal energy is added to or removed from a substance as shown in the figure:

Activity:

Take a begker and place it ovey astan. Put mal pieces of ice in the beaker and suspend a thermoneter in the be ker tomeastre the temperature of ice.
Now place a 1 erner ur der the beaker. The ice will start melting. The temperature of the raximire conair ing ice and water will not increase above $0^{\circ} \mathrm{C}$ until all the ice melts and we yget \times acer lot $0^{\circ} \mathrm{C}$ If this water at $0^{\circ} \mathrm{C}$ is further heated, its temperature will begin to increase above $0^{\circ} \mathrm{C}$ as shown in figure.

Exulanaticn of he Graph:

Dificer parts of the graph can be explained as:
Part AB: On this portion of the curve, the temperature of ice increases from $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
Part BC: when the temperature of ice reaches $0^{\circ} \mathrm{C}$, the ice water mixture remains at this temperature until all the ice melts.

Reason For Not Changing Temperature:

At this stage temperature does not increase for a while because whole thermal energy is being utilized in breaking intermolecular forces and converting solid state into liquid state.
Part CD: The temperature of the substance gradually increases from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The amount of energy so added is used up in increasing the temperature of water.
Part DE: At $100^{\circ} \mathrm{C}$ water begins to boil and changes into steam. The temperature remains $100^{\circ} \mathrm{C}$ until all the water changes into steam.

Reason For Not Changing Temperature:

At this stage again temperature does not increase for a while because whole thermal energy is being utilized in breaking intermolecular forces and converting liquid state into gaseous state.
Q. 2 Define latent heat of fusion. Write down its mathematical formula and unit also find Latent Heat of Fusion of ice by an experiment. (K.B+U.B+A.B)
Ans:

LATENT HEAT OF FUSION

Introduction:

When a substance is changed from solid to liquid state by adding heat, the process is called melting or fusion. The temperature at which a solid starts melting is called its fusion point or melting point. When the process is reversed i.e. when tiquid is ar a it changes into solid state. The temperature at which a substarce clianges fro n licuid in solid state is called its freezing point. Different sutstarcep ave different moltiPg points. However, the freezing poimpo a subtance is the sane at it ree tiny foint.
Definition:
"Heat engigy regrine to thange unt mass of a substance from solid to liquid state at its meltinspoin withut change in the lemperature is called its latent heat of fusion".
Mathematical oo ula.
Itis (hencted by
$H_{\mathrm{f}}=\frac{\Delta Q_{\mathrm{f}}}{\mathrm{m}}$
Or
$\Delta \mathrm{Q}_{\mathrm{f}}=\mathrm{mH}_{\mathrm{f}}$

Unit:

SI unit of Latent Heat of Fusion is Jkg^{-1}

Latent Heat of Fusion of Ice:

 3.36×10^{5} joules heat is required to melt 1 等 of ice in to water $0^{\circ} \mathrm{C}$.

Experiment:

Take a beiks and nlace it oved astenc. Putsmalinieces of ice in the beaker and suspend a thernempter in fie beiker to meas ure the temperature. Place a burner under the beaker as show in the figue:

The ice will start melting. The temperature of the mixture containing ice and water will not increase above $0^{\circ} \mathrm{C}$ until all the ice melts. Note the time which the ice takes to melt completely into water at $0^{\circ} \mathrm{C}$.
Continue heating the water at $0^{\circ} \mathrm{C}$ in the beaker. Its temperature will begin to increase. Note the time which the water in the beaker takes to reach its boiling point at $100^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$. Draw a temperature-time graph such as shown in figure

Calculations:

Figure: Temperature-1 me Graph as 1 e Changes intory ater The toils as

Calculate the lermheat of isipnofice from the data as follows:
Let the nass; of ice $=\mathrm{m}$
Finding he time from the graph
NTHAt torin by ice to melt completely at $0^{\circ} \mathrm{C}=\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{2}-\mathrm{t}_{1}=3.6$ minutes
Iime taken by water to heat from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=\mathrm{t}_{\mathrm{o}}=\mathrm{t}_{3}-\mathrm{t}_{2}=4.6$ minutes
Specific heat of water $\quad \mathrm{c}=4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$
Increase in the temperature of water $\quad \Delta \mathrm{T}=100^{\circ} \mathrm{C}=100 \mathrm{~K}$
Heat required by water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=\Delta \mathrm{Q}=$?

As we know that

$$
\begin{aligned}
& \Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{~T} \\
& =\mathrm{m} \times 4200 \times 100 \\
& =\mathrm{m} \times 42000 \\
& =\mathrm{m} \times 4.2 \times 10^{3} \times 1 \mathrm{~m}^{2} \\
& =4.2 \times 10^{5} \times \mathrm{m}
\end{aligned}
$$

Heat $\Delta \mathrm{Q}^{\mathrm{i}} \mathrm{i}$ supplies $\mathrm{t} \sigma \mathrm{wath} \mathrm{r} 10 \mathrm{t} / \mathrm{me} \mathrm{t}_{\mathrm{t}}$ o rase the tomperature of the water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, wench, therate of at sofoing hett by water in beaker can be given by
Rate of ab icrbing heat

$$
=\Delta L_{2} / t_{0}
$$

Snce heat absorption in time $t_{f}=\Delta Q_{f}=\frac{\Delta Q \times t_{f}}{t_{\mathrm{o}}}$

$$
=\Delta \mathrm{Q} \times \frac{\mathrm{t}_{\mathrm{f}}}{\mathrm{t}_{0}}
$$

As we know that
$\Delta \mathrm{Q}_{\mathrm{f}}=\mathrm{mx} \mathrm{H} \mathrm{H}_{\mathrm{f}}$
$\mathrm{m} \times \mathrm{H}_{\mathrm{f}}=4.2 \times 10^{5} \times \mathrm{m} \times \frac{\mathrm{t}_{\mathrm{f}}}{\mathrm{t}_{0}}$
$\mathrm{H}_{\mathrm{f}}=4.2 \times 10^{5} \times \frac{\mathrm{t}_{\mathrm{f}}}{\mathrm{t}_{0}}$
Putting the values of t_{f} and t_{o} which can be found though graph
$\mathrm{H}_{\mathrm{f}}=4.2 \times 10^{5} \times \frac{3.6}{4.6} \mathrm{JKg}^{-1}$
$\mathrm{H}_{\mathrm{f}}=3.29 \times 10^{5} \mathrm{JKg}^{-1}$

Conclusion:

The latent heat of fusion of ice $\left(\mathrm{H}_{\mathrm{f}}\right)$ found for above experiment is $\mathbf{3 . 2 9 \times 1 0 ^ { 5 }}$ JKg^{-1} however actual value is $3.36 \times 10^{5} \mathrm{JKg}^{-1}$.
Q. 3 Define latent heat of vaporization. Write its mathematical formula. (K.B+U.B+A.B) Ans:

LATENT HEAT OF VAPORIZATION

Introduction:

When heat is given to a liquid at its boiling point, its temperature remains constant. 7% heat energy given to liquid at its boiling point is used up in chamgin its state from liguid to gas without any increase in its temperature.

Definition:

"The quantity of heat that changes/unit m ise of a icquid conpretel \downarrow into gas at its boiling point with ou any change in its ter peraure iscallectits latent heat of vaporization".
Mathenticel Form:
It is denoted b. H_{v}
$\sqrt{T}=\frac{\Delta Q_{2}}{\mathrm{~m}}$
OR
$\Delta \mathrm{Q}_{\mathrm{v}}=\mathrm{mH}_{\mathrm{v}}$
Unit:
SI unit of Latent Heat of vaporization is Jkg^{-1}

Latent Heat of Vaporization of Water:

When water is heated, it boils at $100^{\circ} \mathrm{C}$ under standard pressure. Its temporature remain $100^{\circ} \mathrm{C}$ until it is changed into steam. Its latent heat of vaporizatio is $\left.2.26 \times 1,\right)^{5} \mathrm{Jkg}^{-1}$ That is; one kilogram of water requires 2.20×10^{6} joulc heat to chatge it © mbee. into gas (steam) at its boiling point.

Experiment:

Take abeiker and nlace it oved stenc. Putsmalinieces of ice in the beaker and suspend a thernepter in fie beakr to meas ure the temperature. Place a burner under the beaker as shown in the figule:

The ice will start melting and will convert into water. Continue heating water till all the water changes into steam. Note the time which the water in the beaker takes to change completely into steam at its boiling point $100^{\circ} \mathrm{C}$.
Extend the temperature time graph such as shown in the figure:

Calculations:

Calculate the latent heat of vaporization of boiled water with the data as given:
Let
The mass of ice $=m$
Measuring the time from the graph
Time taken by water to heat from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=\mathrm{t}_{0}=\mathrm{t}_{-\sim}=4.6$ nir utes
Time taken by water $100^{\circ} \mathrm{C}$ to get enanged in $\mathrm{stpan}=\mathrm{t}_{\mathrm{v}}=4_{4}-\mathrm{t}_{3}=24.4$ minutes
Specific heat of water
Increase in the temperature of water

$$
S_{\Delta T}=100^{\circ} \mathrm{C}
$$

Heat rearied torieat wite from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=\Delta \mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \mathrm{T}$

$$
\begin{aligned}
& =\mathrm{m} \times 4200 \times 100 \\
& =\mathrm{m} \times 4.2 \times 10^{3} \times 10^{2} \\
& =4.2 \times 10^{5} \times \mathrm{m} \mathrm{JKg}^{-1}
\end{aligned}
$$

To raise the temperature of the water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}, \Delta \mathrm{Q}$ is given to water. So the heat absorption rate of water in beaker can be given by
Rate of absorbing heat $\quad=\Delta \mathrm{Q} / \mathrm{t}_{\mathrm{o}}$

Since heat absorption in time $t v=Q_{v}=\frac{\Delta Q \times t_{v}}{t_{o}}$

As we know that

$$
\begin{aligned}
& \sqrt[m]{m} \cdot \mathrm{~F}_{\mathrm{v}}=42 \times 10^{5} \times \mathrm{m} \times\left(\frac{t_{v}}{t_{0}}\right) \\
& \mathrm{H}_{\mathrm{v}}=4.2 \times 10^{5} \times\left(\frac{\mathrm{t}_{v}}{\mathrm{t}_{\mathrm{o}}}\right)
\end{aligned}
$$

Putting the values of t_{v} and t_{0} which can be found though graph

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{v}}=4.2 \times 10^{5} \times\left(\frac{24.4}{4.6}\right) \mathrm{Jkg}^{-1} \\
& \mathrm{H}_{\mathrm{v}}=2.23 \times 10^{6} \mathrm{Jkg}^{-1}
\end{aligned}
$$

Results:

The latent heat of vaporization of boiled water $\left(\mathrm{H}_{\mathrm{v}}\right)$ found for above experiment is $2.23 \times 10^{6} \mathrm{JKg}^{-1}$ however actual value is $2.26 \times 10^{6} \mathrm{JKg}^{-1}$.

8.4, 8.5, 8.6 SHORT QUESTIONS

Q. 1 Define latent heat of fusion. Write its formula and unit. (K.B+U.B+A.B)

(GRW 2013, 2015, LHR 2017)
Ans: Given on Page \# 302
Q. 2 Define latent heat of vaporization. Write its formula and unit? (K.B+U.B+A.B)
(GRW 2014)
Ans: Given on Page \# 304
Q. 3 Define fusion point or melting point. (K.B)

Ans:
FUSION POINT
"When a substance is changed from solid to liquid state by adding heat, the process is called melting or fusion. The temperature at which a solid starts melting is called its fusion point or melting point."

Examples:

- Melting point of ice is $0^{\circ} \mathrm{C}$
- Melting point of Mercury i $\mathrm{B}-39^{\circ} \mathrm{C}$
Q. 4 Define boiling point or melling nemt. $K R$)

Ans:
BOLN PIIN
(LHR 2017)
"Wher(a)s ibstance is changed from licjuid to gaseous state by adding heat, the process is called boiling The teimperature at which a liquid starts to convert into gas is called its boiling poin.
12xanges

- Boiling point of water is $100^{\circ} \mathrm{C}$
- Boiling point of Mercury is $357^{\circ} \mathrm{C}$

Q. 5 Define freezing point. (K.B)

Ans:

FREEZING POINT

"When a liquid is cooled, it changes into solid state. The temperatue at viich(2) substance changes from liquid to solid sta te is salied its treesing pont. (1)icterent substances have different melting Doints. Ho wever, the freezing foilt of a substance is the same as its melting point.'
Examples:

- reazing point or water is osd
- Freezing point of Mercury is $-39^{\circ} \mathrm{C}$
O. $6 \sqrt{W h a t}$ is the diftence between specific heat and latent heat of a material? (K.B) DIFFERENTIATION
Specific heat and latent heat of a material can be differentiated as:

Specific Heat	Latent Heat
Definition	
- Specific heat is the amount of heat required to raise the temperature of unit mass of a substance through one Kelvin.	- Latent heat is the amount of heat that is required to convert a unit mass from solid to liquid or liquid to gas at constant temperature.
Unit	
- Its unit is $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.	- It unit is Jkg^{-1}.
Example	
- Specific Heat of water is $4200 \mathrm{Jkg}^{-}$ ${ }^{1} \mathrm{~K}^{-1}$.	- Latent heat of vaporization of water is $2.26 \times 10^{6} \mathrm{Jkg}^{-1}$.

Q. 7 Why temperature of a substance does not change while it is changing its state from solid to liquid? (K.B)
Ans:
TEMPERATURE AT CHANGING STATE
When a substance is changing from solid to liquid state, the temperature of the substance remains the same. It is because the heat supplied to the substance is used to overcome the attractive force among the atoms or molecules of the solid and not to increase the temperature.
Q. 8 Tabulate melting point, boiling point, latent heat of fusion and latent heat of Vaporization of some common substances. (Table for MCQS)
Ans:

TABULATION

Table for above mentioned quantities of common substances is given below.

8.4, 8.5, 8.6 MULTIPLE CHOICE QUESTIONS

1. Quantity of heat that changes one kilogram of a of liquid into gari called: ($F \cdot B$.
(A) Specific heat
(B) Latent hat of rusion
(C) Latent heat of vaporization
(P) A Mll ol :bove
2. Unit of latent heat is: (K. (3)
(A) $\mathrm{Jkg}^{-1} \mathrm{~K}$
(C) J

Latent hea of fu ion ic is: (K.D)
(A) $2,260,000 \mathrm{Fg} \mathrm{g}^{-1}$
(B) $336,000 \mathrm{Jkg}^{-1}$
(C, 3,260,0) © jkg
(D) None of above
4. Latent heat of vaporization of water is: (K.B)
(A) $2,260,000 \mathrm{Jkg}^{-1}$
(B) $336,000 \mathrm{Jkg}^{-1}$
(C) $3,260,000 \mathrm{Jkg}^{-1}$
(D) None of above

8.7

EVAPORATION
 LONG QUESTIONS

Q. 1 Define evaporation. On what factor speed of evaporation depend? Explain. (K.B)
(LHR 2016, GRW 2017)
Ans:

EVAPORATION

Definition:

"Evaporation is the changing of a liquid into vapors (gaseous state) from the surface of the liquid without heating it".

Introduction:

Take some water in a dish. The water in the dish will disappear after some time. It is because the molecules of water are in constant motion and possesses kinetic energy. Fast moving molecules escape out from the surface of water and goes into atmosphere this process is called evaporation as shown in the figure:

oumparison of Boiling and Evaporation:
Unlike boiling, evaporation takes place at all temperatures but only from the surface of a liquid. The process of boiling takes place at a certain fixed temperature which is the boiling point of that liquid. At boiling point, a liquid is changing into vapors not only
from the surface but also within the liquid. These vapors are comes out of the boiling liquid as bubbles which breakdown on reaching the surface.

Evaporation Cause Cooling:

During evaporation fast moving molecules escape out from the ulace of the lipait.
 kinetic energy of the liquid moternles and the ternperature of the liquid. Since temperature of a substande df pends on the a erage kinetic endrgy of its molecules. Evaporatin of nerspiration helps to coplou hodies.
In refrizerator evaporation of liquenisd yas produces cooling.
Factors:
Evapora take place at all temperatures from the surface of a liquid. The rate of中) apres is affected by various factors.

Temperature:

Wet clothes dry up more quickly in summer than in winter because at higher temperature, more molecules of a liquid are moving with high velocities. Thus, more molecules escape from its surface. Thus, evaporation is faster at high temperature that at low temperature.

- Surface Area:

Large is the surface area of a liquid, greater number of molecules has the chance to escape from its surface that is why we spread wet clothes to increase their surface area and to increase rate of evaporation.

- Wind:

Wind blowing over the surface of a liquid sweeps the liquid molecules that have just escaped out. This increases the chance for more liquid molecules to escape out.

- Nature of the Liquid:

Evaporation depends on the nature of the liquid. The molecules having weaker intermolecular forces evaporate more quickly as compared to others, if we take spirit and water on our palm. As evaporation rate of spirit is greater than water, so we feel cooling effect due to evaporation of spirit.

Q. 2 Define the cooling effect of evaporation?

Evaporation has a cooling effect. For example, if example, if you wet your hands, the water on them starts to evaporate. As it evaporate. As it evaporates, it takes thermal energy away from your skin. So your hands feel cold.

The kinetic theory explains the cooling effect like this. If faster particles escape from the liquid, slower once are left behind, so the temperature of the liquid is less than before.

Refrigerators use the cooling effect of evaporation. In the Refrigenator on the right, the process works like this:

1. In the Pipes in the freezer compartment, 要quid catlef ratige ant enaporates and takes thermal energy f.min the iopd and air
2. The vapour is drawn way by the p an p, whien compresses it and turns it into a liquic. Th is relcases the mal une.gy, so we liquia heats up.
3. The ap liquicis copled a it passes mrough the pipes at the back, and the thermal energy is ca ried av ay by fie air:
Qverall, thermalerlergy is transferred from the things inside the fridge to the air outside.
$\sqrt{ }$ (5) weating also uses the cooling effect of evaporation. You start to sweat if your body temperature rises more than about $0.5^{\circ} \mathrm{C}$ above normal. The sweat, which is mainly water; comes out of the tiny pores in your skin. As it evaporates, it takes thermal energy from your body and cools you down.

On a humid ('close') day, sweat cannot evaporate so easily, so it is more difficult to stay cool and comfortable.

8.7 SHORT QUESTIONS

Q. 1 Differentiate evaporation and boiling (K.B)

Ans:
DIFFERENT TION
Evaporation and Boiling can be differentiated ar:

- Exaporation is ane hanging of a liquid into vapors (gasecus state) from the urface of ane liquid without leatins

Temperature

- Evaporation takes place at all - Boiling takes place at specific temperatures.

Bubbles

- There is no bubble formation during \bullet Bubbles form during process of evaporation. boiling.

Area of Occurrence

- Evaporation takes place on the surface - Boiling takes place throughout the of the liquid only. liquid.

Effect

- Evaporation cause cooling.
- Boiling cause burning.

Example

- Take some water in a dish. The water in the dish will disappear after some time. It is because the molecules of water are in constant motion and possesses kinetic energy. Fast moving molecules escape out from the surface of water and goes into atmosphere this process is called evaporation.
- The process in which liquid converts into gas at its boiling point is called vaporization or boiling. Boiling point of water is $100^{\circ} \mathrm{C}$
Q. 2 How evaporation differs from vaporization? (K.B)
(Mini exercise Pg. \# 182) Ans:

DIFFERENTIATION
Evaporation and vaporization can be differentiated as:

Evaporation
 Vaporizatign
 Definition

- Evaporation is the changing of liquid - The press wni h huvid converts into vapors (gaseous state) from the into ges at its brillng point is called surface of the liquid wi ho u/ heating it. Vaporizanon.
- Evap, at on aree plase at all

Bubbles

There is no bubble formation during \bullet Bubbles form during process of evaporation. vaporization.

Example

- Take some water in a dish. The water in the dish will disappear after some time. It is because the molecules of water are in constant motion an 1 possesses kinetic eners.y. Fas phovins molecules escape out from the strfare of water and gees inip athic phere this proess is caled evpulation.
- Vaporization of water takes at $100^{\circ} \mathrm{C}$

Q. 3 How is con ins effect produced by evaporation? (K.B)

Durige vaporation fast moving molecules escape out from the surface of the liquid. Volecules that have lower kinetic energies are left behind. This lowers the average kinetic energy of the liquid molecules and the temperature of the liquid. Since temperature of a substance depends on the average kinetic energy of its molecules. Evaporation of perspiration helps to cool our bodies.
Q. 4 Why wet clothes dry up more quickly in summer than in winter? (K.B+U.B)

WET CLOTH

Wet clothes dry up more quickly in summer than in winter because at higher temperature, more molecules of a liquid are moving with high velocities. Thus, more molecules escape from its surface. Thus, evaporation is faster at high temperature that at low temperature.
Q. 5 Why water evaporates faster when spread over large area? (K.B)

Ans:
LARGE AREA
Large is the surface area of a liquid, greater number of molecules has the chance to escape from its surface that is why we spread wet clothes to increase their surface area and to increase rate of evaporation.
Q. 6 Does spirit and water evaporates at the same rate? (K.B)

RATE OF EVAPORATION
No, spirit and water does not evaporate at the same rate because evaporation depends on the nature of the liquid. The molecules having weaker intermolecular forces evaporate more quickly as compared to others, spirit has weaker intermolecular forces than water so spirit evaporates more quickly than water.
Q. 7 Spread a few drops of ether or spirit on your palm. You feel cold, why? (K.B)

Ans:

COOLING EFFECT

If we take ether or spirit on our palm. Ether or spirit having weaker intermolecular evaporates more quickly so we feel cooling effect due to evaporation of spirit or ether.
Q. 8 Give two uses of cooling effect by evaporation. (A.B)
(Mini avarcise Pg. \# 15 U Ans.

USES OF COOLING EFFECT
Following are uses of cooling effect produced by evaporation

- Evaporation of perspiration inglps to cccrour bocly.
- In refrigerator evatoration tiquefied gas prod ues coo ins.

3.7MbETBTAGKOTjGOESTIONS

1. Coolin i produced in retrigerator Dy: $(K . B)$
(A) Foling
(B) Evaporation of liquefied gas
(C)Fletie current
(D) Objects present in it
initially following were used in refrigerator: (A.B)
(A) Freon and Ammonia
(B) Freon and CFC
(C) Ammonia and CFC
(D) Mercury and CFC
2. In refrigerator Freon has been replaced by (K.B)
(A) Ammonia
(B) CFC
(C) Ammonia and CFC
(D) Mercury and $\mathbb{C F C}$
3. Boiling is same as (K.B)
(A) Evaporation
(C) Vaporiation
4. Which will expomat Thor quickly? ${ }^{\prime}$ 익
(A) Waer
(B) Mercury
(C) Ethe-
(D) Milk

THERMAL EXPANSION
 LONG QUESTIONS

Q. 1 What is thermal expansion? Explain on the basis of kinetic molecular theory. (K.B) (LHR 2014) Ans:

THERMAL EXPANSION

Definition:

"Increase in the length or volume of a substance due to heat is called thermal expansion." Most of the substances solids, liquids and gases expand on heating and contract on cooling. Their thermal expansion and contractions are usually small and are not noticeable. However these expansions and contractions are important in our daily life.

Explanation on the Basis of Kinetic Molecular Theory:

The kinetic energy of the molecules of an object depends on its temperature. The molecules of a solid vibrate with large amplitude at high temperature than at low temperature. Thus, on heating, the amplitude of vibration of the atoms or molecules of an object increases. They push one another farther away as the amplitude of vibration increases as shown in the figure:

Thermarensionesults an mea in lenth breadth and thickness of a substance.
Q. 2 What minear panion? Pn nat factor it depends? Derive its mathematical formula. R.E-U $B+A \cdot I ?$
"If a thin rod is heated, there is a prominent increase in its length as compared to its cross-sectional area. The expansion along length or in one dimension is called linear expansion".

Dependence:

If we heat a metal rod the length of which is much larger than its thichess, then wh increase in length depends on the following three factors:

- Length of thin rod.
- Change in temperature.
- Nature of materia of therod.

Explatation:

 tempera ure Cons der se netal rod of length $\mathbf{L}_{\mathbf{0}}$ at certain temperature $\mathbf{T}_{\mathbf{0}}$. Let its length on heafing tp a len prature \mathbf{T} becomes \mathbf{L} as shown in the figure:

Thus
Increase in length of the $\operatorname{rod}=\Delta L=L-L_{o}$
Increase in temperature $=\Delta T=T-T_{0}$
It is found that change in length $\Delta \mathbf{L}$ of a solid is directly proportional to its original length $\mathbf{L}_{\mathbf{0}}$ and the change in temperature $\Delta \mathbf{T}$. that is;

$$
\begin{array}{ll}
& \Delta \mathrm{L} \alpha \mathrm{~L}_{\mathrm{o}} \Delta \mathrm{~T} \\
\text { or } & \Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T} \\
\text { or } & \mathrm{L}-\mathrm{L}_{\mathrm{o}}=\alpha \mathrm{L}_{\mathrm{o}} \Delta \mathrm{~T} \\
& \mathrm{~L}=\mathrm{L}_{\mathrm{o}}(1+\alpha \Delta \mathrm{T})
\end{array}
$$

Coefficient of Linear Expansion:

We know
$\Delta \mathrm{L}=\alpha \mathrm{L}_{\mathrm{o}} \Delta \mathrm{T}$
Where α is the proportionality constant and it is called co-efficient of linear expansion of the substance it can be defined as:
$\alpha=\frac{\Delta L}{L_{o} \Delta T}$
Thus we can define coefficient of linearexpersion af abstance as "The fractional increase in its length per Kelvin i e tomperathe.
Unit:
Its unit is eer Kel in (K^{1})
Value:
Its vilue depends on the nature of the material of the rod and
Relationship Between β and α :
Relationship Between β and α is given below:
$\beta=3 \alpha$

Examples:

Some values for α and β are given:

Q. 3 What is ol ime exyansion? Cn vhat factors it depends? Derive its mathematical formul $\sim\left(K . B+C . R^{\beta}+A . B\right)$
Ans:

VOILVIE THERMAL EXPANSION

Definition:

Tre volume of a solid also changes with the change in temperature and is called volume thermal expansion or cubical thermal expansion".

Dependence:

If we heat a block then increase in volume of the block depends on the following three factors:

- Original volume of block.
- Change in temperature.
- Nature of material of the block.

Explanation:

Consider a solid of initial volume $\mathbf{V}_{\mathbf{0}}$ at certain temperature $\mathbf{T}_{\mathbf{0}}$. On heating the solid to a temperature \mathbf{T}, let its volume becomes \mathbf{V} as shown in the figure:

Then
Change in volume of a solid $=\Delta \mathrm{V}=\mathrm{V}-\mathrm{V}_{\mathrm{o}}$
And Change in temperature $=\Delta T=T-T_{o}$
Like linear expansion, the change in volume $\Delta \mathbf{V}$ is found to be proportional to its original volume $\mathbf{V}_{\mathbf{o}}$ and change in temperature $\Delta \mathbf{T}$. Thus

And

$$
\Delta \mathrm{V} \alpha \mathrm{~V}_{\mathrm{o}}
$$ $\Delta \mathrm{V} \propto \Delta \mathrm{T}$ $\Delta \mathrm{V} \alpha \mathrm{V}_{\mathrm{o}} \Delta \mathrm{T}$ $\Delta \mathrm{V}=\beta \mathrm{V}_{\mathrm{o}} \Delta \mathrm{T}$ $\mathrm{V}-\mathrm{V}_{\mathrm{o}}=\beta \sqrt{\mathrm{J}_{\mathrm{o}}} \Delta \mathrm{T}$ $\mathrm{V}=\mathrm{V}_{0}+\mathrm{R} \mathrm{V}_{0} \Delta \mathrm{~T}$

Coefficient of Vd lame Exa sion:

Wernov
Where $\boldsymbol{\beta}$ is the proportionality constant and is called the co-efficient of volume expansion. And it can be defined as
$\beta=\frac{\Delta V}{V_{o} \Delta T}$
"The fractional change in its volume per Kelvin change in temperature".

Unit:

Its unit is Per Kelvin $\left(\mathrm{K}^{-1}\right)$
Value:
Its value depends on the nature of he matetial of the rod ard
Relationship Between β and α
The cofffirents of linear and volu ne expansion are related by the following equation $\beta=3 \alpha$
Exampres:
Some valuel for α al $d B$ are siven:

S.	$\boldsymbol{\sim}\left(\mathbf{K}^{\boldsymbol{- 1}}\right)$	$\boldsymbol{\beta}\left(\mathbf{K}^{\boldsymbol{1}}\right)$	
$\mathbf{1}$	Aluminum	2.4×10^{-5}	7.2×10^{-5}
$\mathbf{2}$	Brass	1.9×10^{-5}	6.0×10^{-5}
$\mathbf{3}$	Copper	1.7×10^{-5}	5.1×10^{-5}

Q. 4 Write down the consequences of thermal expansion. (A.B)

Ans: CONSEQUENCES OF THERMAL EXPANSION

The expansions of solids many damage bridges, railway tracks and roads as they are constantly subjected to temperature changes.

- Prevision is made during construction for expansion and contraction with temperature.
- The expansion of solids may damage the bridges, railway tracks and roads as they are constantly subjected to temperature changes. So provision is made during construction for expansion and contraction with temperature. For example, railway tracks buckled on a hot summer day due to expansion if gaps are not left between sections as shown in the figure:

- Bridges made of steel girders also expands during the day and contrast during nigror They will bend if their ends are fixed. To allow thermal expans 10 n , one end i fiked while the other one of the girder rests on rollers in the gap lef ab expansion. Overhead transmission lines (rre) alse gi en a ce lair mpunt of sàg so that they contract in winter with ou spatho as St or th in the fille

Q. 5 Write down the applications of thermal expansion. (A.B)

Ans: APPLICATIONS OF THERMAL EXPANSION
Thermal expansion is used in our daily life. In thermometers, therria expansion is used in temperature measurements.

- To open the cap of a botle that is tisht enpugh, in merse it in inot water for a minute or so. Meta. capexpant a bedones loge liwold now be easy to turn (it) topen.
- Loinstre p ales tighty teveeher, red hot rivets are forced through holes in the plats as sho on ihfigure. The end of hot rivet is then hammered. On cooling, the r.vet: contracts and bring the plates tightly griped.

Gron rims are fixed on wooden wheels of carts. Iron rims are heated. Thermal expansion allows them to slip over the wooden wheel. Water is poured on it to cool. The rim contracts and becomes tight over the wheel as shown in the figure:

- Wires on electric poles are given some sag to prevent breaking in winter.
- Thermal expansion concept is applied in Bimetal strip.
Q. 6 What is Bimetal strip? Write its construction and working. (K.B+A.B) Ans:

BIMETAL STRIP
A bimetal strip consists of two thin strips of different metals such as brass and iron joined together as shown in figure.

On teatine the st ip brass expands more than iron. This unequal expansion causes bend ng of he strip as shown in figure:

dsese.
Bimetal strips are used for various purposes.

- Bimetal thermometers are used to measure temperature especially in furnaces and ovens.
- Bimetal strips are also used in thermo states.
- Bimetal thermo state switch is used to control the temperature of heater coil in an electric iron.
Q. 7 Explain the thermal expansion of liquid. (K.B+U.B)

Ans: THERMAL EXPANSION IN LIQUIDS

The molecules of liquids are free to move in all directions within the liquid. On heating a liquid, the average amplitude of vibration of its molecules increases. The molecules push each other and need more space to occupy. This accounts for the expansion of the liquid when heated. The thermal expansion in liquids is greater than solids due to the weak forces between their molecules. Therefore, the coefficient of volume expansion of liquids is greater than solids.
No Definite Shape of Liquids:
Liquids have no definite shape of their own. A liquid always attains shape of the container in which it is poured. Therefore, when a liquid is heated, both liquid and the container undergo a change in their volume.

Types of Thermal Expansion For Liquids:

There are two types of thermal expansion for liquids:

- Real volume expansion
- Apparent volume expansion

Activity:

Take a long-necked flask. Fill it with some colored liquid up to mark \mathbf{A} on its neck as shnwrin figure.

Relation between expansions：

We observe that there are two types of expansions appear as a result of haning a ligeid 19 any container．
－Real volume expansion
－Apparent volume e⿳亠丷厂阝品ansio
The heat first reaches the flask wherpund and it voline imcreases．As a result liquid desceñis in the flask and ts level ald to B．Attir sometime，the liquid begins to rise above for geting ho．At ceriain teinrerature it reaches at C ．The rise in level from A to C is due to the apparent expausion in the volume of the liquid．Actual expansion of the liguil is greater talan that due to the expansion because of the expansion of the glass 11．．．Phus real expansion of the liquid is equal to the volume difference between A and C in addition to the volume expansion of the flask．Hence
Real expansion of liquid $=$ Apparent expansion of liquid + Expansion of the flask $B C=A C+A B$
The expansion of the volume of a liquid taking into consideration the expansion of the container also，is called the real expansion of the liquid．

Coefficients of volume expansions：

The real rate of volume expansion $\boldsymbol{\beta}_{\mathbf{r}}$ of a liquid is defined as the actual change in unit volume of a liquid for 1 K （or $1^{\circ} \mathrm{C}$ ）rise in its temperature．The real rate of volume expansion $\boldsymbol{\beta}_{\mathbf{r}}$ is always greater than the rate of volume expansion $\boldsymbol{\beta}_{\mathbf{a}}$ by an amount equal to the rate of volume expansion of the container $\boldsymbol{\beta}_{\mathrm{g}}$ ．
Thus $\quad \beta_{\mathrm{r}}=\beta_{\mathrm{a}}+\beta_{\mathrm{g}}$
It should be noted that different liquids have different coefficients of volume expansion．

Coefficients of liquid expansion：

In accordance with the apparent and real expansions of the liquids，their co－efficient of expansion are also measured in two ways：
－Coefficient of apparent expansion
－Coefficient of real expansion
It should be noted that different liquids have different coefficients of volume expansion

8．8 SHORT QUESTIONS

Q． 1 Define linear thermal expansion．On which factors does it depend？（K．B＋U．B＋A．B）

Ans：Given on Page \＃312
Q． 2 Define coefficient of linear thermal expansion．Write its formula and unit $(\boldsymbol{K} \cdot \boldsymbol{B}+\boldsymbol{C} \cdot \boldsymbol{B}+\boldsymbol{A}(\boldsymbol{B})$
Ans：Given on Page \＃313
Q． 3 Define Volume thermal expansion．On which tactors does it Gepend？ （K．B＋U．B＋A．B）
Ans：Given on Page \＃ 314
Q． 4 Define cooffic ent gilinear thermar expausion．Write its formula and unit．（K．B＋U．B＋A．B）
Ans：Given cap ge $+3 \sqrt{3}$
Q． 5 Tabulate cuet ficie n of inear and volume expansion of some common substances．

Q. 6 (Table for MCQS)

Ans: VALUES OF COEFFICIENT OF THERMAL EXPANSION
Following vales have been tabulated by applying relation

Sr. \#	Substance	tala α (K^{-1})	$0 \times 7)$
1	Aluminum	$\geq 2.4 \times 10^{-5}$	$7.2 \leqslant 10^{-3}$
2	Brass	- 1.9×10^{-5}	(). 0×10^{-9}
3	Spper	- 1	5.1×10^{-5}
4	Steer	1.2×10^{-5}	3.6×10^{-5}
5	Siler	1.93×10^{-5}	5.79×10^{-5}
T	(old -	1.3×10^{-5}	3.9×10^{-5}
-	blatinum	8.6×10^{-5}	27.0×10^{-5}
\%	Tungsten	0.4×10^{-5}	4.2×10^{-5}
9	Glass (Pyrex)	0.4×10^{-5}	1.2×10^{-5}
10	Glass (Ordinary)	0.9×10^{-5}	2.7×10^{-5}
11	Concrete	1.2×10^{-5}	3.6×10^{-5}
12	Glycerine	17.7×10^{-5}	53×10^{-9}
13	Mercury	6×10^{-5}	18×10^{-5}
14	Water	7×10^{-5}	21×10^{-5}
15	Air	1.22×10^{-5}	3.67×10^{-5}
16	Carbon dioxide	1.24×10^{-3}	3.72×10^{-3}
17	Hydrogen	1.22×10^{-3}	3.66×10^{-3}

Q. 7 Why steel rods are used in construction? (K.B $+\boldsymbol{A} . \boldsymbol{B}$)

Ans: The steel rods are used to reinforce concrete because both materials expand equally. If the expansions were different, the steel might crack the concrete on a hot day.
Q. 8 Why gaps are left in railway tracks? (K.B)
(LHR 2017)
Ans: GAPS IN RAILWAY TRACKS
Gaps are left in railway tracks to compensate thermal expansion during hot season. Railway tracks buckled on a hot summer day due to expansion if gaps are not left between sections

Q. 9 What is anomalous expansion of water? (K.B)

Ans:

ANOMALOUS EXPANSION

Water on cooling below $4^{\circ} \mathrm{C}$ begins to expand until $0^{\circ} \mathrm{C}$. On further cooling its volume increases suddenly as it changes into ice at $0^{\circ} \mathrm{C}$. When ice is cooled below $0^{\circ} \mathrm{C}$, it contracts i.e. its volume decreases like solids. This unusual expansion of water is called the anomalous expansion of water.
Q. 10 Explain the expansion of water and ice? (K.B)

Ans: When hot water cools, it contracts. However, when water He ezes it expasds as it imm into ice. The force of the expansign can bust water nipe. and solit ock with rainwater trapped in them.

Water expands on ireezor for fclloving redson. In liquid water, the particles (water m) ecules) are clot together. But to ice, the molecules link up in a very open structure that artumy ares up more pace than in the liquid.
Ice has a iower den ity than iiquid water - in other words, each kilogram has a greater vorure. Becauss its lower density, ice floats on water: when liquid water is cooled the ronecues start forming into an open structure at $4^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. It takes up least space, and therefore has its maximum density, at $4^{\circ} \mathrm{C}$.
Q. 11 What is Thermostats? (K.B)

Ans: A thermostats is device which used to detect temperature changes for the purpose of maintaining the temperature of an enclosed area essentially consant. It a ys em including relays, valves, switches, etc, the thitmostat oferate sigal, asaylly focmeai, when the temperature exceeds or f(II). belovy the aesired valus.
Q. 12 Why we use pyrex in oven in plareof sass cish? (K. ß)

Ans: The Heat resistant quality to bear/up to 425 legrees F nlanes the pyrex products ideal for the us iv the kitenen esp ecially for cockings baking purposes in oven. If an ordinary glass dimi pp spaight into a dotanen, the outside of the glass expands before the inside and the stiain cracks the glass. Pyrex expands much less than ordinary glass, so should 110 cack.

EXAMPLE 8.6 (U.B+A.B)

A brass rod is 1 m long at $0^{\circ} \mathrm{C}$. Find its length at $30^{\circ} \mathrm{C}$. (Coefficient of linear expansion of brass $=1.9 \times 10^{-5} \mathrm{~K}^{-1}$)
(LHR 2017)

Solution:

Given Data:

Initial length of the brass rod $=L_{0}=1 \mathrm{~m}$
Initial temperature of the brass rod $=T_{0}=0^{\circ} \mathrm{C}=0+273=273 \mathrm{~K}$
Final temperature of the brass rod $=\mathrm{T}=30^{\circ} \mathrm{C}=30+273=303 \mathrm{~K}$
Change in temperature $\Delta T=T-T_{\text {o }}$
Change in temperature $\Delta \mathrm{T}=303-273=30 \mathrm{~K}$
Coefficient of linear expansion of brass $=\alpha=1.9 \times 10^{-5} \mathrm{~K}^{-1}$

To Find:

Final length of the brass rod $=\mathrm{L}=$?

Calculations:

We know

$$
\mathrm{L}=\mathrm{L}_{\mathrm{o}}(1+\alpha \Delta \mathrm{T})
$$

Putting values

$$
\begin{aligned}
\mathrm{L} & =1\left(1+1.9 \times 10^{-5} \times 30\right) \\
\mathrm{L} & =1.00057 \mathrm{~m}
\end{aligned}
$$

Result:
Hence, the length of the brass bar at $30^{\circ} \mathrm{C}$ will be 1.00057 m .

EXAMPLE 8몬($(U . B+A$,)

Find the volume of a brass cube at $100^{\circ} \mathrm{C}$ wh ose side is 10 cm at $1^{\circ} \mathrm{C}$. (Coefficient of linear thermal expansion of $b a s=1,9 \cdot\left(h^{-5} \mid k^{-1}\right.$,
Solution
Given rat?:
initial le gg h of the a side of brass $=\mathrm{L}_{\mathrm{o}}=0.1 \mathrm{~m}$
Ih it a L vome of the brass cube $=\mathrm{V}_{\mathrm{o}}=\left(\mathrm{L}_{\mathrm{o}}\right)^{3}=(0.1 \mathrm{~m})^{3}=0.001 \mathrm{~m}^{3}=10^{-3} \mathrm{~m}^{3}$
Gnitial temperature of the brass cube $=\mathrm{T}_{\mathrm{o}}=0^{\circ} \mathrm{C}=0+273=273 \mathrm{~K}$
Final temperature of the brass cube $=\mathrm{T}=100^{\circ} \mathrm{C}=100+273=373 \mathrm{~K}$
Change in temperature $\Delta \mathrm{T}=\mathrm{T}-\mathrm{T}_{\text {o }}$
Change in temperature $\Delta \mathrm{T}=373-273=100 \mathrm{~K}$

Coefficient of linear expansion of brass $=\alpha=1.9 \times 10^{-5} \mathrm{~K}^{-1}$

To Find:

Final volume of the brass cube $=\mathrm{L}=$?

Calculations:

We know
Coefficient of linea errarsion of orass $=a-1.9{ }^{-1} \mathrm{~K}^{-1} \square$
(4) c.anfind β as

Put ing value:

$$
\beta=3\left(1.9 \times 10^{-5}\right)
$$

$$
\begin{aligned}
& \beta=5.7 \times 10^{-5} \mathrm{~K}^{-1} \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{o}}(1+\beta \Delta \mathrm{T})
\end{aligned}
$$

Putting values

$$
\begin{aligned}
& \mathrm{V}=10^{-3}\left(1+5.7 \times 10^{-5} \times 100\right) \\
& \mathrm{L}=1.0057 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

Result:

Hence, the volume of brass cube at $100^{\circ} \mathrm{C}$ will be $1.0057 \times 10^{-3} \mathrm{~m}^{3}$.

8.8 MULTIPLE CHOICE QUESTIONS

1. The kinetic energy of molecules of an object depends on (K.B)
(A) Position
(B) Temperature
(C) Area
(D) All of the above
2. Linear expansion of a rod occur along dimension (s): (K.B)
(A) One dimension
(B) Two dimension
(C) Three dimension
(D) All
3. The characteristic of unequal expansion of different metals is employed in a device known as: (K.B)
(A) Thermometer
(B) Burner
(C) Calorimeter
(D) Thermostat
4. Linear expansion depends on: (K.B)
(A) Length of rod
(B) Change in temperature
(C) Nature of material of rod
(D) All of above
5. Thermostat works on the principle of: (K.B)
(A) Unequal expansion of solids
(B) Paceal Sian
(C) Anomalous expansion of wate
(D) Yapori at on
6. Thermostat is used in: (K, B)
(A) Electric 1 ron
B Refigerator
(C) Fir e al mm
(D) All of above
7. SI unit of Cocticie at of linear \& volume expansion is: (K.B)
(A) ${ }^{1} 1$
(B) K
(C,, K^{-1}
(D) ${ }^{\circ} \mathrm{C}$

3 Woume expansion depends on: (K.B)
(A) Volume of block
(B) Change in temperature
(C) Nature of material of block
(D) All of above
9. $\quad \boldsymbol{\beta}=(\boldsymbol{K} . \boldsymbol{B}+\boldsymbol{U} . \boldsymbol{B})$
(A) α
(B) 2α
(C) 3α
10. Liquid expansion is if: (K.B)
(A) One type
(C) Three type
11. The liquid (s) used in then moneters is (arc): K.B)
(A) M rc 1 y
(D) Alcohol
(C) Water
(D) Both A \& B

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | C | A | D | A | A | C | B | A | B | C |
| $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ |
| D | A | B | C | D | A | B | C | D | A | B | C |
| $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | | | | | | |
| D | A | B | C | D | B | | | | | | |
| | | | | | | | | | | | |

8.4 CHANGE OF STATE
8.5 LATENT HEAT OF FUSION
8.6 LATENT HEAT OF VAPORIZATION

1	2	3	4
C	D	B	A

TEXT BOOK EXERCISE

MULTIPLE CHOICE QUESTIONS

8.1 Encircle the correct answer from the given choics.
i. Water freezes at: (K.B)
(a) $0^{\circ} \mathrm{F}$
(c) -273 K
(t) $32^{\circ} \mathrm{F}$
(d) b k
ii. Norminim an bod ten erature is. (K.i)
(b) $37^{\circ} \mathrm{C}$
(a) $15^{\circ} \mathrm{C}$
(d) $98.6^{\circ} \mathrm{F}$
iii. Mer ur isec astermometric material because it has: (K.B)
(a) (niform thermal expansion
(b) Low freezing point
(c) Small heat capacity
(d) All of the above properties

Which of the following material has large specific heat? (K.B)
(GRW 2013)
(a) Copper
(b) Ice
(c) Water
(d) Mercury
v. Which of the following material has large value of temperature coefficient of linear expansion? (K.B)
(a) Aluminum
(b) Gold
(c) Brass
(d) Steel
vi. What will be the value of β for a solid for which α has value of $2 \times 10^{-5} \mathrm{~K}^{-1}$? (U.B+A.B)
(a) $2 \times 10^{-5} \mathrm{~K}^{-1}$
(b) $6 \times 10^{-5} \mathrm{~K}^{-1}$
vii. A large water reservoir keeps temperature of nearby land moderate due to: (K.B)
(a) Low temperature of water
(b) Low specific heat of water
(c) Less absorption of heat
(d) Large specific heat of water
viii. Which of the following affects evaporation? (K.B)
(a) Temperature
(b) Surface area of the liquid
(c) Wind
(d) All of the above

ANSWER KEY

i	ii	iii	iv	v	vi	vii	viii
b	b	d	c	a	b	d	d

8.2 Why does heat flow from hot body to cold body? (K.B)

Ans:
FLOW OF HEAT
Molecules of hot body have greater kinetic energy than the molecules of cold body. Therefore, fast moving molecules give their energy to cold body. So we can say that heat flows from hot body to the cold body. In other word we can say heat flows from hot body to cold body due to temperature difference between them.
8.3 Define the term heat and temperature. (K.B)

Ans: Given on Page \# 291
8.4 What is meant by interns 1 tnergy 0 on body:

(K B)

Ans: Given on Fage \# 290
8.5 How dows heafingaffect the inction or mocules of a gas? (K.B)

Ans: \quad EELLET OF HEAT ON GAS
The kinctic nergy or gas molecules goes on increasing if a gas is heated continuously. Hrais c⿴smes the gas molecules move faster and faster. The collisions between atoms and molecules of the gas become so strong that they tear off the atoms. Atoms lose their electrons and become positive ions. This ionic state of matter is called plasma.
In short on heating the gas, the motion of the molecules becomes faster. As a result average K.E and temperature of gas increases.
8.6 What is thermometer? Why mercury is preferred as thermometric substance? (K.B)

Ans: Given on Page \#
8.7 Explain the volumetric thermal expansion. (K.B+A.B+U B)

Ans: See Q. 3 Long Question TOPIC 8.8 Given mn Page $\%$
8.8 Define specific heat. How rould youind tue specichtat of a solid (K.B+A.B+U.B)

Ans: See Q. 1 'Long Question TPIIC 8.5 (ive an Page tr 2.6.
8.9 Defint and exnloin atent heat of fision. (F. $\boldsymbol{A}+A . B+U . B$)

Ans: See Q. Rene puestion TCPIC 25 viven on Page \# 302
8.10 Deffere latent heat of vaporization. (K.B+A.B+U.B)

Ans: Sca(). 3 Long Question TOPIC 8.6 Given on Page \# 304
$3 \mathrm{~N} \quad W$ hat is meant by evaporation? On what factors the evaporation of a liquid depends? Explain how cooling is produced by evaporation? (K.B+A.B+U.B)
Ans: See Q. 1 Long Question TOPIC 8.7 Given on Page \# 308

NUMERICAL PROBLEMS (U.B+A.B)

8.1 Temperature of the water in beaker is $50^{\circ} \mathrm{C}$. What is its value in Fahrenheit scale?

Solution:

Given Data:

$$
\text { Temperature in Celsius }=\mathrm{T}_{\mathrm{c}}=50^{\circ} \mathrm{C}
$$

To Find:
Temperature in Fahrenheit $=\mathrm{T}_{\mathrm{f}}=$?
Calculations:sss
As we know that
$\mathrm{F}=\frac{9}{5} \mathrm{C}+32$
By putting the values, we have
$\mathrm{F}=\frac{9}{5} \times 50+32$
$\mathrm{F}=90+32$
$\mathrm{F}=122{ }^{\circ} \mathrm{F}$

Result:

Hence, the temperature in Fahrenheit will be $122^{\circ} \mathrm{F}$.
8.2 Normal human body temperature is 98.6° F. Convert it into Celsitis natir ca

Solution:
Given Data:
Nomal human Ten peratyre in ral rehher $=T_{\mathrm{C}}=98.6^{\circ} \mathrm{F}$
To Find:
Ten perature in Cel i as $=T_{\mathrm{c}}=$?
Terperatule in Keivin $=\mathrm{T}_{\mathrm{k}}=$?
gaculations.
As we know that
$\mathrm{C}=\frac{5}{9}(\mathrm{~F}-32)$
By putting the values, we have
$\mathrm{C}=\frac{5}{9}(98.6-32)$
$\mathrm{C}=\frac{5}{9}(66.6)=37{ }^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{K}}=\mathrm{C}+23
$$

By putting the values, we have
$\mathrm{T}_{\mathrm{K}}=374273=310 \mathrm{~K}$

Result:

Hence, the Temperature of normal human body in Celsius will be $37{ }^{\circ} \mathrm{C}$ and
He ternperature of normal human body in Kelvin will be 310 K .
Calculate the increase in the length of an aluminium bar of 2 m long when heated from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. If the thermal coefficient of linear expansion of aluminum is $2.5 \times 10^{-5} \mathrm{~K}^{-1}$.

Solution:

Given Data:

Length of aluminum bar $=\mathrm{L}_{1}=2 \mathrm{~m}$
Initial temperature $=\mathrm{T}_{1}=0^{\circ} \mathrm{C}=(0+273) \mathrm{K}=273 \mathrm{~K}$
Final temperature $=\mathrm{T}_{2}=20^{\circ} \mathrm{C}=(20+273) \mathrm{K}=293 \mathrm{~K}$
Coefficient of linear expansion of aluminum $=\alpha=2.5 \times 10^{-5} \mathrm{~K}^{-1}$

To Find:

Increase in length $=\mathrm{L}-\mathrm{L}_{\mathrm{o}}=$?

Calculations:

As we know that
$\mathrm{L}-\mathrm{L}_{\mathrm{o}}=\alpha \mathrm{L}_{\mathrm{o}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
By putting the values, we have
$\mathrm{L}-\mathrm{L}_{\mathrm{o}}=2.5 \times 10^{-5} \times 2 \times(293-273)$
$\mathrm{L}-\mathrm{L}_{\mathrm{o}}=5 \times 10^{-5}(20)$
$\mathrm{L}-\mathrm{L}_{\mathrm{o}}=100 \times 10^{-5}$
$\mathrm{L}-\mathrm{L}_{\mathrm{o}}=1 \times 10^{-3} \mathrm{~m}=0.1 \mathrm{~cm}=1 \mathrm{~mm}$

Result:

Hence, the increase in length of Aluminum bar will be $1 \times 10^{-3} \mathrm{~m}=0.1 \mathrm{~cm}=1 \mathrm{~mm}$.
8.4 A balloon contains $1.2 \mathrm{~m}^{3}$ of air at $15^{\circ} \mathrm{C}$. Find its volume at 40 f . Than ait coefficient of volume expansion of air is $3.67 \times 10^{-3} \mathrm{~K}^{-1}$.

Solution:

Given Data:

To Eind

Vinal volume of gas $=V_{2}=$?

Calculations:

As we know that

$$
\mathrm{V}=\mathrm{V}_{\mathrm{o}}\left(1+\beta\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)\right)
$$

By putting the values, we have
$\mathrm{V}=1.2\left(1+3.67 \times 10^{-3} \times(313-288)\right)$
$\mathrm{V}=1.2\left(1+3.67 \times 10^{-3}(25)\right)$
$\mathrm{V}=1.2\left(1+91.75 \times 10^{-3}\right)$
$\mathrm{V}=1.2(1+0.091)$
$\mathrm{V}=1.2+0.108=1308=.3 \mathrm{~m}^{3}$
Result:
Hence, the mal vo ume ef sa wilibe $1.3 \mathrm{~m}^{3}$.
8.5 How nuct heat is rqui to increase the temperature of 0.5 kg of water from $10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.
(LHR 2014 GRW 2015)
quity

oiven Data:

Mass of water $=\mathrm{m}=0.5 \mathrm{~kg}$
Initial temperature $=T_{1}=10^{\circ} \mathrm{C}$
Final temperature $=\mathrm{T}_{2}=65^{\circ} \mathrm{C}$
Change in Temperature:

$$
\begin{aligned}
\Delta \mathrm{T} & =\mathrm{T}_{2}-\mathrm{T}_{1} \\
& =(65-10)^{\circ} \mathrm{C} \\
& =55^{\circ} \mathrm{C} \\
& =55 \mathrm{~K}
\end{aligned}
$$

To Find:

Heat required $=\mathrm{Q}=$?

Calculations:

As we know that

$$
\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{~T}
$$

By putting the values, we have

$$
\begin{aligned}
& \Delta \mathrm{Q}=0.5 \times 4200 \times 55 \\
& \Delta \mathrm{Q}=115500 \mathrm{~J}
\end{aligned}
$$

Result:

Hence, the heat required will be 115500 J .
8.6 An electric heater supplies heat at the rate of 1000 joule per second. How much time is required to raise the temperature of 200 g of water from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?

Solution:

Given Data:

Rate of heat supplied by heat $=\mathrm{P}=1 \mathrm{1} 000 \mathrm{Js}^{-1}$
Mass of water $=\mathrm{m}=200 \mathrm{~g}=0.2 \mathrm{~kg}$
Specific heat of water $=c-20 \% \mathrm{~J}=\mathrm{v}^{-1} \mathrm{k} \mathrm{k}^{-1}$
Initial temperat…e $=T_{1}=20^{\circ} \mathrm{C}$
Final emperatime $=T_{2}=90^{\circ} \mathrm{C}$
Fhlang in te nqerature $\Rightarrow \Delta T=90-20=70^{\circ} \mathrm{C}=70 \mathrm{~K}$
To Eind:
Ghea. required $=\mathrm{Q}=$?
Time $\quad=\mathrm{t}=$?

Calculations:

As we know that

$$
\mathrm{Q}=\mathrm{cm} \Delta \mathrm{~T}
$$

$$
\begin{aligned}
& \mathrm{Q}=0.2 \times 4200 \times 70 \\
& \mathrm{Q}=58800 \mathrm{~J}
\end{aligned}
$$

As we also know that
$P \times t=Q$
$\mathrm{t}=\mathrm{Q} / \mathrm{P}$
$\mathrm{t}=588000 / 1000$
$\pm=58.8 \mathrm{~s}$
Result
Heac, the heat lequired will be 58800 J and the time taken will be 58.8 s .
¢.7 1 How roch ice will melt by $50000 \mathbf{J}$ of heat? Latent heat of fusion of ice $336000 \mathbf{~ J k g}^{-1}$.
(GRW 2013, 14)

Solution:

Given Data:

Heat supplied to ice $=\Delta \mathrm{Q}_{\mathrm{f}}=50000 \mathrm{~J}$
Latent heat of fusion of ice $=\mathrm{H}_{\mathrm{f}}=336000 \mathrm{Jkg}^{-1}$

To Find:

Mass of ice $=\mathrm{m}=$?
Calculations:
As we know that

$$
\Delta \mathrm{Q}=\mathrm{mx} \mathrm{H} \mathrm{H}_{\mathrm{f}}
$$

So $\quad \mathrm{m}=\frac{\Delta \mathrm{Q}}{\mathrm{H}_{\mathrm{f}}}$
By putting the values, we have
$\mathrm{m}=\frac{50000}{336000}$
$\mathrm{m}=0.15 \mathrm{~kg}=150 \mathrm{~g}$

Result:

Hence, the mass of ice will be 150 g .
8.8 Find the quantity of heat needed to melt 100 g of ice at $-10^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$.

Solution:

Given Data:

Mass of ice $=\mathrm{m}=100 \mathrm{~g}=0.1 \mathrm{~kg}$
Specific heat of ice $=2100 \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$
Specific heat of wate $=4200 \mathrm{Jk}^{-1}$
Latent heat of fusion $\mathrm{ff} \mathrm{ce}=335000 \mathrm{Jkg}$
(IVi) ia temperature of ice $-T=10^{\mathrm{n}} \mathrm{C}$
Cina 1 tenerature $=12=10 \mathrm{E}$

To Find:

H) eat cestined to raise the temperature of ice from $-10^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}=\mathrm{Q}=$?

Calculations:
Step-I:
Heat required to raise the temperature of ice from $-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}=\Delta \mathrm{Q}_{1}=$?
$\mathrm{T}_{1}=-10^{\circ} \mathrm{C}$
$\mathrm{T}_{2}=0^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=0^{\circ} \mathrm{C}-(-10)^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}=10 \mathrm{~K}$
$\Delta \mathrm{Q}=\mathrm{cm} \Delta \mathrm{T}$
$\Delta \mathrm{Q}_{1}=2100 \times 0.1 \times 10$
$\Delta Q_{1}=2100 \mathrm{~J}$

Step-II:

(H) at enuied to convert iee at 0 C into water at $0^{\circ} \mathrm{C}=\Delta \mathrm{Q}_{2}=$?
we krow hit
$\Delta \mathrm{Q}=\mathrm{nl} l_{\mathrm{f}} \quad$
$\Delta Q_{2}=n .1 \times 336000$
$\Delta \mathrm{Q}_{2}=33600 \mathrm{~J}$

Step-III:

Heat required to raise temperature water from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}=\Delta \mathrm{Q}_{3}=$?
$\mathrm{T} 1=0^{\circ} \mathrm{C}$
$\mathrm{T} 2=10^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=10^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}=10 \mathrm{~K}$
We know that
$\Delta \mathrm{Q}=\mathrm{cm} \Delta \mathrm{T}$
$\Delta \mathrm{Q}_{3}=4200 \times 0.1 \times 10$
$\Delta \mathrm{Q}_{3}=4200 \mathrm{~J}$
Total heat required $=\mathrm{Q}=\Delta \mathrm{Q}_{1}+\Delta \mathrm{Q}_{2}+\Delta \mathrm{Q}_{3}$
$\mathrm{Q}=2100+33600+4200$
$\mathrm{Q}=39900 \mathrm{~J}$

Result:

Hence, the total heat required will be 39900 J .
8.9 How much heat is required to change 100 g of water at $100^{\circ} \mathrm{C}$ into steam?
(LHR 2013, 2015)

Solution:

Given Data:

Mass of water $=\mathrm{m}=100 \mathrm{~g}=0.1 \mathrm{~kg}$
Temperature of water $=\mathrm{T}_{1}=100^{\circ} \mathrm{C}$
Temperature of steam $=\mathrm{T}_{2}=100^{\circ} \mathrm{C}$
Latent heat of vaporization of water $=\mathrm{H}_{\mathrm{v}}=2.26 \times 10^{6} \mathrm{Jkg}^{-1}$

To Find:

Heat required to change wate into ster $r=: Q_{v}=?$
Solution:
$\mathrm{Q}_{\mathrm{v}}=\mathrm{mxH} \mathrm{H}_{\mathrm{v}}$
$0,=0.2 \times 26710 \mathrm{~J}$
$\mathrm{Z}_{\mathrm{v}}=2.26 \cdot 10^{\circ} \mathrm{J}$
Result:
Gience, the heat required to change water into steam will be $2.26 \times 10^{5} \mathrm{~J}$.
8.10 Find the temperature of water after passing 5 g of steam at $100^{\circ} \mathrm{C}$ through 500 g of water at $10^{\circ} \mathrm{C}$.

Solution:

Given Data:

Mass of water $=\mathrm{m},=500,5=0.518$
(iv: Ss of stean $=\mathrm{m}_{\mathrm{p}}=5 \mathrm{~g}=0.00 .5 \mathrm{~kg}$
Ten perature of water $=T_{1}=10^{\prime \prime} \mathrm{C}$
Terninerane or steam $=\mathrm{T}_{2}=100^{\circ} \mathrm{C}$
Specific heat of water $=c=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Latent heat of vaporization of vaporization $=H_{v}=2.26 \times 106 \mathrm{Jkg}^{-1}$

To Find:

Final temperature of water $=T=$?

Calculations:

According to law of heat exchange
Heat lost by steam = Heat gain by water

$$
\begin{gathered}
\mathrm{mH}_{\mathrm{v}}+\mathrm{cm} \Delta \mathrm{~T}=\mathrm{cm} \Delta \mathrm{~T} \\
(0.005)\left(2.26 \times 10^{6}\right)+(4200)(0.005)(100-\mathrm{T})=(4200)(0.5)(\mathrm{T}-10) \\
11300+21(100-\mathrm{T})=2100(\mathrm{~T}-10) \\
11300+2100-21 \mathrm{~T}=2100 \mathrm{~T}-21000 \\
11300+2100+21000=2100 \mathrm{~T}+21 \mathrm{~T} \\
344400=2121 \mathrm{~T} \\
\mathrm{~T}=\frac{34400}{2121} \\
\mathrm{~T}=16.2^{\circ} \mathrm{C}
\end{gathered}
$$

Result:

Hence, the final temperature of water will be $16.2^{\circ} \mathrm{C}$

Thermal Properties of Matter

SELF TEST

Time: 40 min.
M: 1 ks .25
Q. 1 Four possible answers $(A),(B),(C) \&(1)$ to gat quest on ar, giren. Mari the correct answer.
($6 \times 1=6$)

1. What wivt the value of it a a solid forwh ce \approx has a value of $2 \times 10^{-5} \mathrm{~K}^{-1}$?
(A) $2 \times x^{-5} K^{-1}$
(B) $6 \times 10^{-5} \mathrm{~K}^{-1}$
(C) $8 \times 10^{-5} \mathrm{~K}^{-1}$
(D) $12 \times 10^{-5} \mathrm{~K}^{-1}$

Vice neites heat is:
(A) kelvin
(B) joule (J)
(C) $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
(D) kg
3. Density of water in kgm^{-3} is:
(A) 1000
(B) 4200
(C) 4300
(D) 4500
4. The relation between co-efficient of linear expansion and volume expansion is
(A) $\alpha=3 \beta$
(B) $\beta=3 \alpha$
(C) $\alpha=\frac{3}{\beta}$
(D) $\beta=\frac{3}{\alpha}$
5. The value of absolute zero on Kelvin scale is equal to:
(A) $273^{\circ} \mathrm{C}$
(B) 273 K
(C) 273 F
(D) $-273^{\circ} \mathrm{C}$
6. Heat capacity of 5 kg of water, is:
(A) $4200 \mathrm{JK}^{-1}$
(B) $21000 \mathrm{JK}^{-1}$
(C) $2100 \mathrm{JK}^{-1}$
(D) $2900 \mathrm{JK}^{-1}$

Q. 2 Give short answers to following questions.

$(5 \times 2=10)$
i. What is thermostate? Write its uses.
ii. How much ice will melt by $50,000 \mathrm{~J}$ of heat? Latent heat of fusion of ice is $336000 \mathrm{Jkg}^{-1}$.
iii. Why does ether evaporate quickly than water?
iv. Why the temperature of ice does not change at $0^{\circ} \mathrm{C}$ for some time!
v. What happens when we touch a hot body?

Q. 3 Answer the following quastions in tetall

a) Explain volume thermal ey peasion in selids. Also derive the formula tor volume expansion.
b) en electricheater upflies heat at the rate of 1000 joule per second. How much ime is equired o ralse the temperature of 200 g of water from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$?
larents or guardians can conduct this test in their supervision in order to check the skill of students.

