S WIFERMEDIATE AND SE		R	MBE	NU	OLL	R).	on Ne	ersio	V
BOARD											
STORE OF THE STORE	0	0	0	0	0	0	0	0	0	0	0
SLAMABAD"	1	1	1	1	1	1	1	1	1	1	1)
	2	2	2	2	2	2	2	2	2	2	2)
swer Sheet No	3	3	3	3	3	3	3	3	3	3	3)
	4	4	4	4	4	4	4	4	4	4	4)
n. of Candidate	5	5	5	5	5	5	5	5	5	5	5)
	6	6	6	6	6	6	6	6	6	6	6)
	\bigcirc	$\overline{\mathcal{O}}$	7	7	7	7	7	$\overline{7}$	7	7	7)
n. of Invigilator	8	8	8	8	8	8	8	8	8	8	8
	9	9	9	9	9	9	9	9	9	9	9

Time allowed: 20 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

(1)	IIA ha	one of the followin ving electronic conf	g charged	$1s^2 2s^2$	$2p^6 3s^2$?	element of group
	A. C.	$\begin{array}{c} A^{+3} \\ A^{+1} \end{array}$	0	B. D.	A^{-2} A^{-2}	0
(2)		one of the followin er pairs of subshells?		subshel	ll has the lowest ene	rgy as compared
	A.	1s,2s	0	B.	2s,2p	0
	C.	3s, 3p	0	D.	3s, 4s	0
(3)	Which	one of the followin	g Isotopes	is used	l in nuclear reactors	?
	A.	U-234	0	B.	U-238	0
	C.	U-235	0	D.	U-233	0
(4)	How r	nany molecules of o	xygen gas	contair	ns one mole of oxyg	en gas?
	A.	$8 \ge 6.022 \ge 10^{23}$	0			
	B.	6.022×10^{23}	0			
	C.	$32 \times 6.022 \times 10^{23}$	Q			
	D.	$16 \ge 6.022 \ge 10^{23}$	0			
(5)	The va	ariable that is kept co	onstant in	Charles	s' Law is:	
	A.	Temperature	0	В.	Volume	0
	C.	Pressure	0	D.	Volume & Temper	rature ()
(6)	The m	ost dilute solution a	mongst the	e follow	ving is:	
	A.	1M	0	B.	0.5 M	0
	C.	0.02M	0	D.	0.0005M	0
			Page 1 o	of 2		
			U			

(7)	Pressu	ure Cooker works or	n the princ	iple of	relationship of boili	ng point with:
	A.	External Pressure	O	B.	Evaporation	Ô
	C.	Boyle's law	Ŏ	D.	Volume	Ŏ
			-			-
(8)	17g o	f NH ₃ is dissolved in	n 1 dm ³ of	solutio	n, its molarity will b	be:
	A.	1	0	В.	2	0
	C.	3	0	D.	4	0
(9)	In H.	S, the oxidation state	of Sulph	ur ic.		
(9)	A.	+1	\cap	B.	+ 2	\bigcirc
	A. C.	- 1	X	D.	-2	Ö
	C.	- 1	U	D.	-2	0
(10)	The c	ompound having Hy	drogen bo	onding a	among its molecule	is:
	A.	C_6H_6	0	B.	MgO	0
	C.	CH_4	Ō	D.	H_2O	Ō
(11)	Metal	lic Character increas	ses down t	the grou	p, which one of the	following is the
	most	metallic:				
	A.	Rb	0	В.	Cs	0
	C.	Na	0	D.	K	0
(12)	The n	nost electronegative	element in	n the gr	oup VIIA is:	
	A.	F	0	В.	C1	0
	C.	Br	Ō	D.	Ι	Ō
			-			-

Page 2 of 2

Time allowed: 2.40 hours

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

Q.2 Attempt any ELEVEN parts from the following. All parts carry equal marks.

 $(11 \times 3 = 33)$

- i. Calculate the number of molecules in 4.5 moles of Carbon dioxide.
- ii. Draw Bohr's Atomic Model for Potassium ₁₉K³⁹ indicating the location of electrons, protons and neutrons.
- iii. Calculate the mass of one Hydrogen atom in gram.
- iv. Why is an atom always electrically neutral? Give reason.
- v. Write electronic configuration of Aluminum ${}_{13}Al^{27}$. Identify its group and period.
- vi. Define ionic bond. Give one example of two elements forming an ionic bond between them.
- vii. Write two similarities and two differences between isotopes.
- viii. Elements are unstable in free state except noble gases. Explain how elements attain stability?
- ix. State Charles's Law. Derive its mathematical expression.
- x. How does the change in temperature affect the Vapour Pressure of a liquid? Show with the help of graph.
- xi. How will you prepare 250 cm³ of 0.025M Na₂SO₄ solution from a stock solution of 2M Na₂SO₄?
- xii. Identify the oxidizing and reducing agents in the following reaction with reason: a. $H_2S + Cl_2 \longrightarrow 2HCl + S$
 - b. $Mg + 2HCl \longrightarrow MgCl_2 + H_2$
- xiii. Define corrosion. How is corrosion prevented by cathodic protection?
- xiv. What is the composition of Aqua Regia? Write its importance.
- xv. Discuss why is sugar soluble in water but petrol is not?

SECTION – C (Marks 20)

Note: Attempt any TWO questions. All questions carry equal marks. $(2 \times 10 = 20)$

Q.3 a. What are type of bonds responsible for the formation of F_2 , O_2 and N_2 ? Explain the formation of bond with the help of structures. (2+2+2)

b. Give importance of intermolecular forces in our life. Mention any four points. (1+1+1+1)

Page 1 of 2

- Q.4 a. Explain the principle, working and construction of Daniel Cell with the help of a labelled diagram. (1+2+3)
 - b. Write down the trend of Ionization Energy in the Periodic Table. Explain with reasons. (2+2)
- Q.5 a. Describe Rutherford's Experiment and its conclusions. (2+2+2)
 - b. Why is the boiling point of water at the top of Mount Everest 70° C. (4)

* * * * *

SUPLEMENTARY TABLE

Atomic No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Symbol	Н	He	Li	Be	В	С	Ν	0	F	Ne	Na	Mg	Al	Si	Р	S	Cl	Ar	Κ	Ca
Mass no	1	4	7	9	11	12	14	15	19	20	23	24	27	28	31	32	35	40	39	40

Page 2 of 2

CHEMISTRY SSC-I SLOs

SECTION – A

- 1. Identify the relationship between electronic configuration and the position of an element in the periodic table.
- 2. Distinguish between shells and sub-shells.
- 3. State the importance and uses of isotopes.
- 4. Calculate the number of representative particles (Molecules) in a given number of moles of a substance.
- 5. Account for temperature-volume changes in a gas using Charles' law.
- 6. Describe how to prepare dilute solutions from concentrated solutions of known molarity.
- 7. Explain the effect of temperature and external pressure on Vapour Pressure and Boiling Point of a liquid.
- 8. Solve problems involving Molarity of a solution.
- 9. Determine the oxidation state/number of an element in a compound.
- 10. Recognize a given compound as either having ionic or covalent bond. (Relevant SLO is missing in the curriculum)
- 11. Show how cations and anions are related to the terms metals and nonmetals. (Relevant SLO is missing in the curriculum)
- 12. Describe how electronegativity of elements changes with in a group and withing a period in the periodic table.

SECTION – B

Q2.

- i. Calculate the number of representative particles (Molecules) in a given number of moles of a substance.
- ii. Describe the structure of an atom representing the location of protons, electrons and neutrons.
- iii. Calculation of mass of an element from the given number of atoms.
- iv. Describe the structure of an atom in terms of number of particles in it.
- v. Identify the relationship between electronic configuration and the position of an element in the periodic table.
- vi. Describe the characteristics of ionic bonds (compounds).
- vii. Discuss properties of isotopes of different elements.
- viii. Explain how elements attain stability?
- ix. Account for temperature volume changes in a gas using Charle's Law.
- x. Explain the effect of temperature on the vapour pressure of a liquid.
- xi. Describe how to prepare dilute solutions from concentrated solutions of known molarity.
- xii. Identify the oxidizing and reducing agents in a redox reaction.

- xiii. Summarize the methods used to prevent corrosion.
- xiv. Describe the inertness of noble metals.
- xv. Use the principle/rule "like dissolves like" to predict the solubility of one substance in another.

Section- C

Q3.

- a. Describe the formation of covalent bond between two non-metallic elements with Cross and Dot structures.
- b. Explain the need/importance of intermolecular forces.
- Q4.
- a. Sketch a Daniel cell, labelling the cathode, anode and the direction of flow of electrons. Identify the half-cell and describe (the principle of working) voltaic cell.
- b. Identify the trend of ionization energy in the periodic table.
- Q5.
- a. Describe the contributions of Rutherford that caused (led) to the development of the atomic theory.
- b. Explain the effect of temperature and external pressure on the vapour pressure and boiling point of a liquid.

CHEMISTRY SSC-I TABLE OF SPECIFICATION

Topics/Subtopics	Fundamentals of chemistry	Structure of atoms	Periodic table	Structure of Molecules	Physical states of matter	Solutions	Electrochemistry	Chemical Reactivity	Total marks for each Assessment Objective	%age
(Knowledge based)		1-3(01) 2-vii(03) 5a(06)		1-10(01) 2-vi(03) 2-ix(03) 3a(06)			1-9(01)	1-12(01)	25	28.7%
(Understanding based)	1-4(01) 2-iii(03)	1-2(01) 2-ii(03) 2-iv(03)	2-v(03) 4b(04)	2-viii(03)	1-5(01) 1-7(01) 2-x(03) 5b(04)	1-6(01) 1-8(01) 2-xv(03)	2-xii(03) 2-xiii(03)	2-xiv(03)	44	50.6%
(Application based)	2-i(03)		1-1(01)	3b(04)		2-xi(03)	4a(06)	1-11(01)	18	20.7%
Total marks for each Topic/Subtopic	07	17	08	20	09	8	13	5	87	100%

KEY:

1-1(01) Question No-Part No. (Allocated Marks)