V	Version No.		
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

CHEMISTRY SSC-II SECTION – A (Marks 12) Time allowed: 20 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. Each part carries one mark.

(1) Which one of the following compounds is formed by the reaction of Aluminium Hydroxide Al(OH)₃ with Sulphuric Acid (H₂SO₄)?

A.	$Al(SO_4)_3$	0	В.	Al ₂ CO ₃	(
C.	$Al_2(SO_4)_3$	0	D.	AlCl ₃	(

(2) Marble Buildings are disintegrated by acid rain because of the reaction of acid with:

	А.	Calcium Sulphate ()	В.	Calcium Nitrate
	C.	Calcium Carbonate 🔿	D.	Calcium Oxalate
(3)	Dipe	ptide is formed by joining of	two mol	ecules of:

A.	Amino acids	Ο	В.	Alcohols	0
C.	Carboxylic acids	Ο	D.	Amines	0

(4) Two products obtained from the carbonating tower during the Solvay Process are:
 A. NH₄Cl and CO₂
 B. NH₄HCO₂ and NH₄Cl
 C. NaHCO₃ and NH₄Cl
 D. NaHCO₃ and NH₃

(5) The end product of the reaction of acetylene with concentrated alkaline KMnO₄ is oxalic acid. In this reaction acetylene undergoes:

		2		0	
A.	Reduction	Ο	В.	Oxidation	Ο
C.	Substitution	0	D.	Rearrangement	Ο

(6) One mole of an unsaturated hydrocarbon reacts with one mole of hydrogen to form a saturated compound. Predict the formula of unsaturated compound.

A.	$C_3 H_4$	0	В.	$C_6 H_{12}$	0
C.	C_4H_{10}	0	D.	C_7H_{16}	0

Page 1 of 2

(7)	F ⁻ is a A. B. C. D.	a base, because it: Contains OH grou Ionizes in water to Can accept an elec Can accept proton	give OH ⁻ tion pair	ions	0000	
(8)	Which A. C.	n one of the followir CH ₃ - CH ₂ - OH CH ₃ - CHO	ng compou	inds is a B. D.	nn aldehyde? CH ₃ - COOH CH ₃ - COCH ₃	0
(9)	The p A. C.	H of 10 ⁻³ M aqueous 3 2	solution o	of NaOH B. D.	H is: 11 9	00
(10)		n one of the followir	ng pollutar	nt is NO	T produced by the l	ourning of fossil
	fuel? A. C.	CO CFC _s	8	B. D.	NO_x SO_x	0
(11)		reversible reaction g	given belov	w the ur	nit of Kc is:	
	280 <u>2</u> A. C.	$2 + O_2 \xrightarrow{2} 2SO_3$ mol ⁻¹ dm ³ mol.dm ⁻³	00	B. D.	$mol^{-1} dm^{-3}$ mol.dm ³	00
(12)	The co A. C.	omposition of matte FeSiO ₃ Cu ₂ O & FeS		during B. D.	the metallurgy of co FeS & Cu ₂ S Cu ₂ O & Cu ₂ S	opper is:

Page 2 of 2

Time allowed: 2.40 hours

Total Marks: 53

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

Q.2 Attempt any **ELEVEN** parts from the following. All parts carry equal marks.

 $(11 \times 3 = 33)$

- i. Classify the following substances as Lewis acids or Lewis bases. a. $AlBr_3$ b. CH_3 - CH_2 - OH c. CN^{-1}
- ii. How has Le-Chatlier's principle made it possible to get maximum amount of product from Habers process?
- iii. Concentration of an aquas solution of potassium hydroxide 1.0×10^{-3} mol/dm³. What is its pH? Is this solution acidic, basic or neutral?
- iv. What is slaked lime? How is it produced during Solvay process?
- v. Write the name and formulas of the three Nitrogen containing fertilizers.
- vi. Describe ion exchange method for removal of hardness of water.

vii. For the given reversible reaction equilibrium concentration are: $N_{2(g)} + 3H_{2(g)} \implies 2NH_{3(g)}$

 $N_2 = 0.602 \text{mol/dm}^{-3}$ $H_2 = 0.420 \text{ mol/dm}^{-3}$ and

 $NH_3 = 0.113 \text{ mol/dm}^{-3}$. Calculate the value of Kc and determine Kc unit.

- viii. Write down balanced chemical equations showing the formation of salt: a. reaction of HCl acid with Al metal
 - b. reaction of HCl acid with calcium carbonate
- ix. Write the structural formulas of the following: a. n-Heptane b. Methanal c. Methanoic acid
- x. Differentiate between homocyclic and heterocyclic compound with the help of structural formula.
- xi. Write two methods of the preparation of propane. Give chemical equation with conditions.
- xii. How will you differentiate between Ethane and Ethene using a chemical test.
- xiii. Identify A and B in the following chemical reaction: $CH_3 - C \equiv CH + Cl_2 _ CCl_4$ A $A + Cl_2 _ CCl_4$ B
- xiv. Discuss ways by which global warming can be decreased?
- xv. Define the following with examples:a. Lipids b. Fats c. Oils

Page 1 of 2

SECTION – C (Marks 20)

Note: Attempt any TWO questions. All questions carry equal marks. $(2 \times 10 = 20)$

- Q.3 a. State law of mass action. Derive Kc expression for the following reaction: (2+4)
 - b. $\begin{array}{ccc} 4HCl (g) + O_2(g) & \longrightarrow & 2Cl_2(g) + 2H_2O (g) \\ Identify Lowery Bronsted acids and bases in the following reactions. Justify your answer. (1+1+1+1) \\ (i) & HCO_3^- + H_2O (l) & \longrightarrow & CO_3^{-2}(aq) + H_3O^+(aq) \end{array}$
 - $\begin{array}{ccc}
 (i) & HCO_3^- + H_2O(l) & \longrightarrow & CO_3^{-2}(aq) + H_3O^+(aq) \\
 (ii) & NH_3(g) + HNO_3 & \longrightarrow & NH_4NO_3 \\
 (iii) & F^- + BF_3 & \longrightarrow & BF_4^\end{array}$

(iv)
$$CH_3COOH + H_2O(1) \implies CH_3COO^- + H_3O^+(aq)$$

- Q.4 a. What is hard water? Explain the methods for removing temporary hardness of water. (1+2+2)
 - b. What are nucleic Acid? Describe structure and function of DNA. (1+2+2)
- Q.5 a. What is functional group? Identify the functional group in the following organic compound: (2+1+1+1)
 - (i) CH₃COCH₃ (ii) CH₃COOH (iii) HCOCH₃
 b. How will you convert propene into propyne. Name the products formed in each step. (3+2)

* * * * *

Page 2 of 2

CHEMISTRY SSC-II

SLOs

SECTION – A

- i. Complete and balance a neutralized balanced equation.
- ii. Describe acid rain and its effects.
- iii. Observe and explain the denaturing of protein.
- iv. Describe reactions of Solvay Process.
- v. Write chemical equation showing reaction of KMnO₄ with alkene.
- vi. Write chemical equation to show the reaction of alkene.
- vii. Classify substance as Lewis Acid or Base
- viii. Recognize and identify a molecule functional group.
- ix. Write the equation for self-ionization of water.
- **x.** Air pollutants.
- **xi.** Derive an expression for the equilibrium constant and its units.
- xii. Describe some metallurgical operations.

<u>SECTION – B</u>

Q.2

- i. Classify substances as Lewis acids or bases.
- ii. Le-Chatlier's principle
- iii. Given the hydrogen ion or hydroxide ion concentration, classify a solution as neutral, acidic, or basic.
- iv. Outline the basic reactions of Solvay process.
- v. Describe the composition of urea.
- vi. Describe methods for eliminating temporary and permanent hardness of water.
- vii. Derive an expression for the equilibrium constant and its units.
- viii. Complete and balance a neutralization reaction.
- ix. Differentiate between different organic compounds on the basis of their functional groups.
- x. Classify organic compounds into straight chain, branched chain and cyclic compounds.
- xi. Write a chemical equation to show the preparation of alkanes from hydrogenation of alkenes and alkynes and reduction of alkyl halides.
- xii. Write chemical equations showing halogenation for alkenes, alkenes and alkynes.
- xiii. Write a chemical equation to show the chemical properties of alkynes.
- xiv. Explain how components of the atmosphere can be used successfully in producing important chemicals.
- xv. Define fat and oil.

SECTION – C

- Q.3 a. Define Law of mass action. Derive Kc expression for the equilibrium constant and its units.
 - b. Use the Bronsted-Lowry theory to classify substances as acids or bases, or as proton donors or proton acceptors. Classify substances as Lewis acids or bases.
- Q.4 a. Differentiate among soft, temporary and permanent hard water. Describe methods for eliminating temporary and permanent hardness of water.
 - b. Nucleic acids and their importance.
- Q.5 a. Differentiate between different organic compounds on the basis of their Functional groups. Write a chemical equation to show the preparation of alkynes from Dehalogenation of 1,2-dihalides and tetrahalides.
 - b. Write chemical equations showing halogenation for alkenes, alkenes and Alkynes and dehydrohalogenation on reactions.

CHEMISTRY SSC-II TABLE OF SPECIFICATION

Topics/Subtopics	Chemical Equilibrium	Acid bases and salts	Organic chemistry	Hydrocarbons	Biochemistry	The atmosphere	Water	Chemical Industries	Total marks for each Assessment Objective	%age
(Knowledge based)				2-xi(03)	1-3(01) 2-xv(03) 4b(05)	1-2(01)	2-vi(03) 4a(05)	1-4(01) 1-12(01) 2-iv(03)	26	29.9%
(Understanding based)	2-vii(03)	1-1(01) 1-7(01) 2-i(03) 2-viii(03) 3b(04)	1-8(01) 2-ix(03) 2-x(03) 5a(05)	1-5(01) 1-6(01) 2-xii(03) 2-xiii(03) 5b(05)		1-10(01)		2-v(03)	45	51.7%
(Application based)	1-11(01) 2-ii(03) 3a(06)	1-9(01) 2-iii(03)				2-xiv(03)			16	18.4%
Total marks for each Topic/Subtopic	13	16	12	16	09	05	08	08	87	100%

KEY:

1-1(01) Question No-Part No. (Allocated Marks)