NUST Past Paper – Engineering

Total Time: 3 Hrs		\circ	1	m	ПΓ	n	1/	1	O.	700	Tota	l Question: 2	:00
-------------------	--	---------	---	---	----	---	----	---	----	-----	------	---------------	-----

- 1. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = 3\pi/2$ then the value of $x^9 + y^9 + z^9 1/x^9y^9z^9$ is equal to b. 1 WWW. J'I'

 - c.
 - d. 3
- 2. Let p, q, r be the sides opposite to the angle P,Q.R respectively in a triangle PQR. If r² sin P sin Q = pq then the triangle is
 - a. Equilateral
 - b. Acute angled but not equilateral
 - c. Obtuse angled if sin
 - d. Right angled
- 3. Let p, q, and r be sides opposite to the angles P, Q, R respectively in a triangle PQR. Then 2 prsin (P-Q+R/2) equals Kidunya.com
 - a. $p^2 + q^2 + r^2$
 - b. $p^2 + r^2 q^2$
 - c. $q^2 + r^2 p^2$
 - d. $p^2 + q^2 r^2$
- 4. Let P (2,-3), Q (-2, 1) be the vertices of the triangle PQR. If the centroid of Δ PQR lies on the line 2x + 3y = 1, then the locus of R is
 - a. 2x + 3y = 9
 - b. 2x 3y = 9
 - c. 3x + 2y = 5
 - d. 3x 2y = 5
- 5. If n(A) = m, then nP(A) =
 - a. 2 ⁿ
 - b. 2n
 - c. 2^m
- 6. If f is a real-valued differentiable function such that f(x) f'(x) < 0 for all real x, then Z).CON
 - a. F(x) must be an increasing function
 - b. F(x) must be an decreasing function

Mayar

- c. |F(x)| must be an increasing function
- d. |F(x)| must be an decreasing function

- 7. Role's theorem is applicable in the interval [-2,2] for the function

 a. $F(x) = x^3$ b. $F(x) = 4x^4$ c. $F(x) = 2x^3 + 3$
- d. $F(x) = \pi |x|$ 8. The solution of 25 d²y/dx² -10dy/dx + y = 0, y(0) =1y(1) =2e^{1/5} is a. $y = e^{5x} + e^{-5x}$
 - a. $y=e^{5x}+e^{5x}$ b. $y=(1+x)e^{5x}$ c. $y=(1+x)e^{x/5}$
 - d. $y=(1+x)e^{-x/5}$
- 9. Let P be the midpoint of a chord joining the vertex of the parabola $y^2 = 8x$ to another point on it. then the locus of P is
 - a. = 2x
 - b. $y^2 = 4x$
 - c. $x^2/4 + y^2 = 1$
 - d. $x^2 + y^2/4 = 1$
- 10. the line x =2y intersects the ellipse $x^2/4 + y^2 = 1$ at the point P and Q. the equation of the circle with PQ as diameter is
 - a. $x^2 + y^2 = 1/2$
 - b. $x^2 + y^2 = 1$
 - c. $x^2 + y^2 = 2$
 - d. $x^2 + y^2 = 5/2$
- 11. the eccentric angle in the first quadrant of a point on the ellipse $x^2/10 + y^2/8 = 1$ at a distance 3 units from the center of the ellipse is
 - a. $\pi/6$
 - b. $\pi/4$
 - c. $\pi/3$
 - d. $\pi/2$
- 12. The transverse axis of a hyperbola is along the x axis and its length is 2a. The vertex of the hyperbola bisects the line segment joining the center and the focus. The equation of the hyperbola is
 - a. $6x^2 y^2 = 3a^2$
 - b. $x^2 3y^2 = 3a^2$
 - c. $x^2 6y^2 = 3a^2$
 - d. $3x^2 y^2 = 3a^2$
- 13. A point moves in such a way that the difference of its distance from two point (8, 0) and (-8, 0) always remains 4. Then the locus of the point is
 - a. A circle
 - b. A parabola
 - c. An ellipse
 - d. A hyperbola

lines 3x + 4y = 9 and y=mx +1 is also an integer is
a. 0 b. 2 c. 4 d. 1
b. 2
c. 4
0.1
15. If a straight line passes through the point (α,β) and the portion of the line intercepted between
the axes is divided equally at the point, then x/ α + y/ β is
a. 0
b. 1
c. 2
d. 4
16. The maximum value of $ z $ when the Complex number z satisfies the condition $ z + 2/z $ is
a. $\sqrt{3}$
b. $\sqrt{3} + \sqrt{2}$
c. $\sqrt{3+1}$
d. $\sqrt{3-1}$
17. If $(3/2 + i\sqrt{3}/2)^{56} = 3^{25}$ (x +iy), where x and y are real, then the ordered pair (x,y) is
a. (-3,0)
a. (-3,0) b. (0,3)
c. (0,-3)
d. ($\frac{1}{2}$) ($\frac{1}{3}$)
18. If z-1/z+1 is purely imaginary, then
a. z = ½
b. z =1
c. z =2
d. z =3
19. Then inverse of $q \rightarrow p$ is ?
a. p → q
b. p → q
c. q → p
d. q →p
20. a vehicle registration number consists of 2 letters of English alphabet followed by 4 digits, where
the first digit is not zero. Then the total number of vehicles with distinct registration number is $a. 26^2 \times 10^4$
c. $^{26}p_2 \times 9 \times 10^3$ d. $26^2 \times 9 \times 10^3$
u. 20 x3 x10

14. The number of integer values of m, for which the x coordinate of the point of intersection of the

21.	The nu	umber of the words that can be written using all the letter of the word "irrational" is
	a.	10! / (2!)3
	b.	10! / (2!)2
	c.	10! /2!
	d.	10!
22.	Four s	peakers will address a meeting where speaker Q will always speak after speaker. Then the
	numb	er of ways in which the order of speakers can be prepared is
	a.	256
	b.	128
	C.	24
	d.	12
23.	The nu	umber of diagonals in a regular polygon of 100 sides is
	a.	4950
	b.	4850
	C.	4750
200 200	d.	4650
24.		be coefficients of powers of x in the 2^{nd} , 3^{rd} and 4th terms in the expansion of $(1 + x)^n$ where
		ve integer be in arithmetic progression. Then the sum of the coefficients of odd power of
		e expansion is
	a.	
	b.	
	C.	128
25	d.	256
25.	The su	um 1 x 1 1 + 2 x 2 ? +50 x 50! Equal to 51!
	b.	51!-1
	С.	51!+1
		51! X 2
26.		imbers are in AP. Such that their sum is 3 the first term is 4 times the third term. Then the
	fifth te	
		-15
		-3
	c.	9
	d.	-4
27.	The su	um of the infinite series $1 + 1/3 + 1.3/1.6 + 1.3.5/3.6.9 + 1.3.5.7/3.6.9.12 + \dots$ Is
	equal	to com
	a.	$\sqrt{2}$
	b.	$\sqrt{3}$
	c.	$\sqrt{3/2}$
	d.	1/1/3 ORN JULIU
	٠.	am of the infinite series $1+1/3+1.3/1.6+1.3.5/3.6.9+1.3.5.7/3.6.9.12+$ Is to $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3/2}$ $\sqrt{1/3}$

28. The equations $x^2 + x + a = 0$ and $x^2 + ax + 1 = 0$ have a common real root a. For no value of a
b. For exactly one value of a
c. For exactly two value of a
d. For exactly three value of a
29. If 64, 27, 36 are the Pth, Qth and the Rth terms of the G.P then P + 2Q is equal to
a. R
b. 2R
c. 3R
d. 4R
30. The equation $y^2 + 4x + 4y + k = 0$ represents a parabola whose lotus rectum is
a. 1
b. 2
c. 3
d. 4
31. If the circles $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^2 + y^2 + 2ky + k = 0$ intersect orthogonally, then k is
equal to a. 2 or -3/2 b. 3 or 3/3
a. 2 or -3/2
a. 2 or -3/2 b2 or -3/2 c. 2 or 3/2
d2 or 3/2
32. If four distinct points(2k,3k),(2,0),(0,3),(0,0) lie on a circle , then
a. K<0
b. 0< K<1
c. K = 1
d. K > 1
33. The line joining a(bcos α , bsin) and B(acos β , asin β), where a \neq b, is produced to the point
M(x,y) so that AM:MB = b:a. then x cos ($\alpha + \beta/2$) +y sin ($\alpha + \beta/2$)
a. 0
b. 1
c1
d. $a^2 + b^2$
34. let the foci of the ellipse $x^2/9 + y^2 = 1$ subtend right angle at a point P then the locus of P is
b. $x^2 + y^2 = 2$
c. $x^2 + y^2 = 4$ d. $x^2 + y^2 = 8$
a. x + y - 8y 0000

35.		eneral solution of the differential equation dy /dx =(x+y+1/2x +2y +1) is
	a.	Log 3x +3y +2 +3x +6x =c
	b.	
	c.	Log 3x +3y +2 -3x -6x =c
2.6	d.	Log 3x + 3y + 2 + 3x + 6x = e
36.	A⊆ <i>B</i>	Maga
	a.	A ∩ B = A
	b.	A ∩ B′ = A
		A- B = A
		A U B = A
37.		alue of the integral $\pi^{/2}\int_{0}^{\infty} 1/1 + (\tan x)^{101} dx$ is equal to
	a.	1
	b.	•
	С.	·
		$\pi/4$
38.		tegrating factor of the differential equation $3x \log x dy/dx + y = 2 \log x$ is given by
	a.	log x³
	b.	log (log x)
	С.	
	d.	
39.		per of solutions of the equation $\tan x + \sec x = 2 \cos x$, $x \in [0, \pi]$ is
	a.	0 100
	b.	1
	c.	2
	d. 	
40.		alue of the integral $\pi^{/4}\int_0^\pi \sin x + \cos x / 3 + \sin 2x$ dx is equal to
	a.	Log 2
	b.	Log 3
	c.	¼ log 2
	d.	
41.	Let y	$= (3^{x} - 1/3x + 1) \sin x + \log (2 + x)$, x >-1 then at x = 0, dy /dx equals
	a.	
	b.	1 0 COM
	с.	
	d.	
42.		value of the function $f(x) = x/8 + 2/x$ on the interval [1,6] is
	a.	
	b.	9/8
	c.	13/12
	d.	17/8

- d. Ableian group
- e. Monoid
- 44. The value of the integral ${}^2\int_{-2}$ (1 +2sinx)e^{|x|} dx is equal to
 - a. 0
 - b. $e^2 1$
 - c. $2(e^2-1)$
- the roots of the equation(p^2 -4q) ($p^2 x^2 + 4px$) – 16q =0 are

a.
$$(1/\alpha + 1/\sqrt{\beta})$$
 and $(1/\alpha - 1/\sqrt{\beta})$

b.
$$(1/\sqrt{\alpha} + 1/\beta)$$
 and $(1/\sqrt{\alpha} - 1/\beta)$

c.
$$(1/\sqrt{\alpha} + 1/\sqrt{\beta})$$
 and $(1/\sqrt{\alpha} - 1/\sqrt{\beta})$

d.
$$(\sqrt{\alpha} + \sqrt{\beta})$$
 and $(\sqrt{\alpha} - \sqrt{\beta})$

- 46. The number of solutions of the equation log2(x2
 - a. 0

 - d. 3
- 47. The sum of the series $1 + 1^n/2 C1 + 1^n/3 C2 + \dots + 1^n/n+1Cn$.
 - a. $2^{n+1} 1 / n + 1$
 - b. $3(2^{n}-1)/2n$
 - c. $2^{n}+1/n+1$
 - d. $2^{n}+1/2n$
- 48. The value of $\sum_{r=2}^{\infty} \frac{1+2+3+\cdots \dots (r-1)}{r!}$ I sequal to
 - a. e
 - b. 2e
 - c. e/2
 - www.filmikidlumys.com d. 3e/2

49.	If P=	Q=PP ^t , then the value of the determinant of Q is equal to
	a.	
	b.	
	С.	
	d.	
50.		emainder obtained when 1! +2! + +95! Is divided by 15 is
	a.	14
	b.	3
	c. d.	0
51		Q R, are angles of triangle PQR then the value of -1 cosR cosQ is equal to
J1.		-1 cosR -1 cosP
	b.	0 cosQ cosP -1
	C.	7/2
	d.	1
52.		umber of real values of α for which the system of equations $x + 3y + 5z = \alpha x$, $5x + y + 3z = \alpha y$,
		$y + z = \alpha z$ has infinite number of solutions is
	a.	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	b.	
	C.	4
	d.	6 ON MOUNT OF THE PROPERTY OF
53.	The t	otal number of injections(one –one into mappings) from {a1,a2,a3,a4} to
	{b1,b2	2,b3,b4,b5,b6,b7} is
	a.	400
	b.	420
	c.	800
		840
54.	It the	set G = $\{1, \omega, \omega 2\}$ is an abelian group w.r.t multiplication then inverse of ω is?
	a.	1
	b.	ω
	C.	ω ²
	d.	does not contain an inverse
55.		ecks of playing cards are well shuffled and 26 cards are randomly distributed to a player. the probability that the player gets all distinct cards os
	a.	52C ₂₆ /104C ₂₆
	а. b.	$2 \times 52C_{26} / 104C_{26}$
	c.	2 ¹³ x 52 C ₃₆ / 104 C ₃₆
	d.	2 ²⁶ x 52C ₂₆ / 104C ₂₆

56. An urn contains * red 5 white balls. Three balls are drawn at random. Then the probability that
balls of both colors are drawn is
a. 40/143
a. 40/143 b. 70/143
c. 3/13
d. 10/13/7/7/7/0
57. Two coin are available, one fair and the other two headed .choose a coin unbiased coin is
chosen with probability ¾ given that the outcome is head the probability that the two headed
coin was chosen is
a. 3/5
b. 2/5
c. 1/5
d. 2/7
58. Let R be the set of real numbers and the functions $f:R \rightarrow R$ and $g:R \rightarrow R$ be defined $f(x) = X^2 + 2x$
-3 and $g(x) = x + 1$ then the value of x for which $f(g(x)) g(f(x))$ is
a1
6. 0 c. 1
d. 2
59. If a ,b,c are in arithmetic progression, then the roots of the equation ax ² -2bx + c =0 are
a. 1 and c/a
b1/a and 4c
c1 and –c/a
d2 and -c/2a CO. Let u be the colution of the differential equation $y_1 dy/dy = y_1^2/4$. Let u be the colution of the differential equation $y_1 dy/dy = y_2^2/4$. Let u be the colution of the differential equation $y_1 dy/dy = y_2^2/4$.
60. Let γ be the solution of the differential equation x dy/dx = $y^2/1$ -logx satisfying y(1) =1 then γ
satisfies
a. $Y = x^{y-1}$
b. Y = x ^y
c. $Y=X^{y+1}$
d. $Y=x^{y+2}$
61. The area of the region bounded by the curves $y = \sin -1x + x(1-x)$ and $y = \sin -1x - (1-x)$ in the
first quadrant is
a. 1 b. ½ c. 1/3
b. ½
c. 1/3
d. 1/4
62. The value of the integral f_1 [[x-3] +1-x]dx is equal to
a. 4
b. 8
c. 12
d. 16

63.		and $g(X)$ are twice differentiable functions on (0,3) satisfying $f''(x) = g''(x)$, $f(1) = 4$ $g(1) = 6$
	f(2) = 3	g(2) = 9 then f(1) - g(1) is
	a.	4
	b.	8 g(2) = 9 then f(1)-g(1) is 4 -4 0 -2
	c.	
	d.	
64.		denote the greater integer less than or equal to x, then the value of the integral $^1\int_{-1}$
	[x -2]	2[x]]dx is equal to
	a.	3
	b.	2
	c.	-2
	d.	
65.	The p	oints representing the complex number z for which $arg(z-2/z+2) = \pi/3$ lies on
	a.	A circle
	b.	A straight line
	c.	An ellipse
		A parabola
66.		b, c, p, q, r be positive real numbers such that a, b, c are in G.P and $a^d = b^q = c^r$ then A,B,C
		p, q rare in G.P
	b.	p, q rare in A.P
	c.	p, q rare in H.P
		p²,q² and r² rare in A.P
67.	a com	pound statement at the form "If p then q" is called
	a.	implication
	b.	hypothesis
	C.	tautology
		contingency
68.	The qu	uadratic equation $2x^2(a^3 +8a -1) \times a^2 -4a = 0$ possesses roots of opposite sign. then
	a.	$a \le 0$
	b.	0 <a<4< th=""></a<4<>
		$4 \le a < 8$
		a≥8
69.		$x2-16$) $\leq \log(4x-11)$, then
	a.	4 <x≤ 5<="" th=""></x≤>
	b.	a≥8 x2-16) ≤ log(4x - 11), then $4 < x \le 5$ X < -4 Or x > 4 $-1 \le x \le 5$
	C.	$-1 \le x \le 5$ $X < -1 \text{ OTX} > 5$
	d.	x<-T ALL XS BIT A A A A A A A A A A A A A A A A A A A

a.	
	¹⁹ C ₉
b.	²⁰ C ₁₀
с.	²⁰ C ₁₀ ²¹ C ₁₁ ²² C ₁₂
d.	
71. The sy	stem of linear equation $\lambda x + y + z = 3$, x-y-2z=6, -x + y +z = μ
a.	Infinite number of solutions for $\lambda \neq -1$ and all μ
b.	Infinite number of solutions for λ =-1 and all μ =3
C.	No solution for $\lambda \neq -1$
d.	Unique solution for λ =-1 and all μ =3
72. Let A	and B be two events with $P(A^c)$ =0.3, $P(B)$ =0.4 and $P(A \cap B')$ =0.5 Then $P(B/(A \cup B'))$ is
equal	to
a.	1/4
b.	1/3
c.	1/2
d.	2/3
73. The se	et of real number is a subset of
a.	Set at natural number
b.	Set at natural number Set of whole number Set of Set of complex number
c.	Set of
d.	Set of complex number
74. Let C ₁	and C_2 denote the cents of the circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 1$ respectively and I
and Q	be their Points of intersection. The n the area of triangle C₁PQ and C₂PQ are in ratio
a.	3:1
b.	5:1
c.	7:1
d.	9:1
75. A Stra	ight line through the point of intersection of the lines $x + 2y = 4$ and $2x + y = 4$ meet the
coordi	inates axes at A and B the locus of the midpoint of AB is
a.	3(x+y)=2xy
b.	2(x+y) = 3xy
c.	2(x + y) = xy
d.	(x y) =3xy
76. Let P a	and Q be the points on the parabola y^2 =4x so that the line segment PQ subtends righ
angle	at the vertex. If PQ intersects the axis of the parabola at R then the distance of the ve
from F	Ris SIMONIALICA
a.	
b.	1 2 WWW.
c.	4
d.	6

	one of the following groups has quantities that do not have the same dimension
	Velocity, speed Pressure, stress Force, impulse Work, energy
b.	Pressure, stress
c.	Force, impulse
	age errors in the measurement of mass and speed are 3% and 4% respectively. The measurement of K.E. is
a.	11%
b.	105
C.	8%
d.	9%
86. The ve	ctor product of two vectors is zero, when
a.	They are parallel to each other
b.	They are equal vectors
c.	They are perpendicular to each other
d.	They are inclined at angle of 60°
87. In righ	t hand rule, the direction of the product vector will be
a.	Along the thumb erect Perpendicular to the erect thumb
b.	Perpendicular to the erect thumb
c.	Along the rotation of fingers
d.	None
	an object slides at constant speed down an inclined plane, the coefficient of frict
be app	proximately be
a.	sinθ
b.	cos θ
C.	tan Θ
	cot θ
	prces 3N and 2N are at an angle Θ such that the resultant is R the first force is now
increa	sed to 6N and the resultant becomes 2R. the value of Θ is
a.	30°
b.	60°
C.	90°
d.	1200
90. Torque	e acting on a body determines
a.	Acceleration
b.	e acting on a body determines Acceleration Linear acceleration
c.	Angular acceleration
	Direction of motion of the body

	2)
o Danna Va. com	, U
91. If the velocity of a body is uniform the velocity time graph is a straight line which	ch is
a. Parallel to x axis	
b. Parallel	
c. At an angle of 45° with the x-axis	
d. Along the y-axis	
92. At what angle of projection the horizontal range of a projectile is max?	
a. 30°	
b. 45°	
c. 60°	
d. 90°	4th and 5th
93. What will be the ratio of the distance moved by a freely falling body from rest in	4" and 5"
second of journey a. 4: 5	
b. 7:9	
c. 16:25	
d. 1:1	
94. According to the postulates of the theory of relativity, a fourth dimension has been	n added to the
three dimensions already associated with a Cartesian frame of reference. Which is	1 –
dimension?	
a. Space	
b. Inertial frame of reference	
c. Speed of light	
d. Time	
95. If the water fall from a dam to into a turbine wheel 19.6m below, then the velocit	y of water at
the turbine is (Take g = 9.8m/s^2)	
a. 9.8m/s	
b. 19.6 m/s	
c. 39.2 m/s	
d. 98.0 m/s 96. The escape velocity of earth in Km/s	
a. 9.75	
b. 11.2	
c. 12.3	
d. 15.6	
97. Which is constant for a satellite in orbit?	J)
a. Velocity	
b. K.E	
97. Which is constant for a satellite in orbit? a. Velocity b. K.E c. Angular momentum	
d. P.E	
CANNA OL -	
40 -	

98. How r	nuch water a pump of 2kw can raise in one minute to a height of 10 m, (Take g =10r
a.	1000 liters
b.	1200 liters
c.	100 liters Modulation
d.	2000 liters
99. The es	scape velocity from the earth's surface is 11km/s. A certain planet has a radius twice
of the	earth but its mean density is the same as that of the earth. The value of the escape
veloci	ty from this planet would be
a.	24km/s
b.	11km/s
C.	5.5km/s
d.	16.5km/s
100.	If force and displacement of particle in the direction of force are doubled. work w
be	
a.	Double
b.	4 times
C.	Half 14 time
	74 time
101.	An electric motor is required to haul a cage of mass 400kg up a mineshaft through
	al height of 1200m in 2 minutes. What will be the electrical power required if the ov
	ency is 80%
a.	3 ZKW 10 0
b.	5kw
C.	32kw
d.	50kw
102.	A couple produces Purely linear motion
a. b.	Purely intending Purely rotational motion
	Linear and rotational motion
c. d.	No motion
103.	The units of angular acceleration I s
a.	Radian
b.	
c.	Radian per second Radian per second ² None
d.	None
104.	Once the space shuttle is in orbit at a radius R from earth's center, what force doe
	xerts on the astronaut?
a.	Mg
b.	Zero newton
	NA/G
c.	M/g

105.		In which case application of angular velocity is useful?
	a.	When body is rotating
	b.	When velocity of body is in a straight line
	c.	When velocity is in a straight line
	d.	None
106.		If the area of a circle is equal to its circumference the radius of this circle is
	a.	1
	b.	2
	c.	3
	d.	4
107.		Rotational K.E of a disc is
	a.	$K.E_{rot} = 1/2 \text{ mv}^2$
	b.	$K.E_{rot} = 1/3 \text{ mv}^2$
	c.	$K.E_{rot} = 1/4 \text{ mv}^2$
	d.	None
108.		Which of these statements is not correct
	a.	Moment of inertia is independent of shape and size of the body
	b.	Moment of inertia depends on choice of axes
	c.	Momentum of inertia does not depend on the mass of body
	d.	None
109.		A particle is moving in a vertical circle. The tensions the string when passing through two
рс	sitic	ons at angles 30° and 60° from vertical (lowest positions) are T_1 and T_2 respectively. Then
	a.	$T_1 = T_2$
		$T_2 > T_1$
		$T_1 > T_2$
	d.	Tension in the string always remains the same
110.		At terminal velocity, fluid friction is
	a.	Maximum
	b.	Minimum
	C.	Zero
	d.	Decreasing
111.		Decreasing $v = \sqrt{2g(h1 - h2)}$ shows the Equation of continuity
	a.	
	b.	Bernoulli's theorem
	c.	Torricelli's theorem
	d.	Equation for compressible fluids
		Vo

112.	With the increase of temperature viscosity
a.	Increase
b.	Decrease
c.	Remain constant
d.	Doubles
113.	In case of streamed lined flow of liquid the loss of energy is
a.	Maximum
b.	Minimum
c.	Infinite
d.	Equal to what is in turbulent flow
114.	A car engine is based on the principle of
a.	Bernoulli's equation
b.	Ventura relation
c.	Torricelli's theorem
d.	None
115.	When a beam of light traveling in a rare medium is reflected from a denser mediun
a.	Suffers no phase change
b.	Undergoes a phase change of 1809
c.	Undergoes a phase change of 270° ()
d.	Undergoes a phase change of 900
116.	Two water pipes of diameters 4 cm and 8 cm are connected with a supply line. The
veloci	ty of flow of water in the pipe 4 cm diameter is
a.	¼ times
b.	4 times
C.	Twice
d.	½ of 8 cm diameter pipe
117.	The density of water in F.P.S system is
a.	50lb/ft ²
b.	50ft/lb
c.	50ft/lb ³
d.	50lb/ft ³
118.	Total pressure on 1 m x 1 m gate immersed vertically at a depth of 2 m below th
free w	Total pressure on 1 m x 1 m gate immersed vertically at a depth of 2 m below the vater surface will be 1000 kg 2000kg 4000kg 8000 kg
a.	1000 kg
b.	2000kg
c.	4000kg
d.	8000 kg M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	W 200

119.		The frequency of second pendulum is
115.	a.	1 hertz
	b.	2 hertz
	С.	0.5 hertz
	d.	Ngge
120.	u.	The type of motion in which an oscillating disturbance is transmitted from one
	ositio	on to the next without the actual rectilinear translation of the particles of the medium is
-	alled	
	а.	
	b.	Rotatory motion
	С.	Wave motion
	d.	Rectilinear motion
121.	u.	A ball is just allowed to fall from the window of a moving train it will hit the ground
	llow	ring a
	a.	Circular path
	b.	
	c.	- 550
	d.	
122.		Which one of the following is a simple harmonic motion?
	a.	Wave moving through a string fixed at both end
	b.	Earth spinning about its own axis
	c.	Ball bouncing between two rigid vertical walls
	d.	Particle moving in a circle with uniform speed.
123.		A block weighting 40 kg extends a spring by 0.16m from its unscratched position. What
is	the	value of k
	a.	170 kg/s ²
	b.	
	c.	215 kg/s ²
	d.	
124.		A simple harmonic oscillator has a period T and energy E. the amplitude of the oscillator
is	dou	bled choose the correct answer
	a.	Period and energy get double
	b.	Period gets doubled while energy remain same
	c.	Period gets doubled while energy remain same Energy gets doubled while Period remain same Period remain same and Energy becames 4 times
	d.	Period remain same and Energy becomes 4 times
125.		A particle performs simple harmonic motion of amplitude 0.020 m and frequency
2.	5Hz.	. What is its max speed?
	a.	0.008m/s No. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	b.	0.050 m/s
	c.	0.125 m/s
	d.	0.314 m/s

126.		Which if electromagnetic radiation has the longest wavelength?
	a.	γrays
	b.	UV SILMAN ALLES
	c.	Microwaves
	d.	X rays
127.		The length of a spring is α when a force of 4 N is applied on it the length $\ $ is β when 5 N
fo	rces	is applied then the length of spring when 9N force is applied is
	a.	5β - 4α
	b.	β - α
	c.	5α -4β
	d.	$9(\beta - \alpha)$
128.		Two springs of spring constant k1 and K2 are joined in series. The effective spring
СО	nsta	ant of combination is given by
	a.	(k1 +k2)/2
	b.	K1+ K2
	c.	K1k2/(k1 + k2)
	d.	$\sqrt{k1k2}$
129.		The various features of wave phenomenon can be very conveniently studies by an
ар	par	atus called
	a.	Sonometer
	b.	Ripple tank
	c.	hydrometer
	d.	barometer
130.		A highly directional beam of ultrasonic wave can be made to travel in water in
	a.	many meters
	b.	many kilometers
	c.	several kilometers
	d.	none
131.		Applications of the result of scientific studies of sound in the designs of building etc. is
ca	lled	
	a.	Optics Wave mechanics Acoustics
	b.	Wave mechanics
	c.	Acoustics
	d.	Statics
132.		Laplace formula is derived from
	a.	Isothermal; change
	b.	Adiabatic change
	c.	Isobaric change
	d.	Isochoric change

133.		In the absence of an external torque the angular momentum of a rotating body is
	a.	Constant
	b.	Variable ST CONTRACTOR OF THE PARTY OF THE P
	c.	Unstable
	d.	Zerom
134.		Progressive waves of frequency 300 Hz are superimposed to produce a system of
sta	atior	nary waves in which adjacent nodes are 1.5m apart. What is the speed of the progressive
W	aves	?
	a.	100m/s
	b.	200m/s
	c.	450 m/s
	d.	900 m/s
135.		Which one of the following could be the frequency of ultraviolet radiation
	a.	1.0 x 10 ⁶ Hz
	b.	$1.0 \times 10^9 \text{Hz}$
	c.	1.0 x 10 ¹² Hz
	d.	1.0 x 10 ¹⁵ Hz
136.		To hear a clear echo, the reflecting surface must be at a minimum distance of
	a.	10m
	b.	16.5m
	c.	33m N V
	d.	66m
137.		Which one is not a produced by sound wave in air
	a.	Polarization
	b.	Diffraction
	c.	Refraction
	d.	Reflection
138.		The conduction due to charges produced by pair generation in a semi-conductor is
ca	lled	
	a.	Polarity
	b.	Intrinsic conduction Electrostatic Amplitude modulation
	c.	Electrostatic
	d.	Amplitude modulation
139.		Ever point of a wave front may be considered as a
	a.	Source
	b.	Source of wave front
	c.	Source of secondary wave front
	d.	None

140.		The phenomenon of polarization occurs only in which of the following wave type
	a.	Electromagnetic
	b.	Longitudinal
	c.	Mechanical waves
	d.	Matter waves
141.		Spontaneous reaction is one
	a.	Directional, irreversible, real process
	b.	Unidirectional, reversible, imaginary reaction
	c.	Irreversible, Unidirectional, real process
	d.	Imaginary, reversible reaction
142.		Which one of the following solution has the highest boiling point?
	a.	0.1M BaCl ₂
	b.	0.1M glucose
	c.	0.1M urea
	d.	0.1M NaCl
143.		The pH of 0.005 molar solution of sulphuric acid is approximately:
	a.	0.010
	b.	
	c.	1 2
	d.	0.005
144.		Given that heat of neutralization of strong acid and strong base as - 57.1 kg. The head
pr	odu	ced when 0.25 mole of HCI is neutralized with 0.25 mole NaOH in aqueous solution is
	a.	14.275%
	b.	57.1kj
	c.	22.5kj
	d.	28.6kj
	e.	All
145.		Number of moles of NaOH present in 2L of 0.5 M NaOH is
	a.	1.5
	b.	2.0
	c.	1.0
	d.	2.5
146.		The molar solution of sulphuric acid is equal to
	a.	N/2 solution
	b.	N/2 solution N solution 2N solution 3N solution
	c.	2N solution
	d.	3N solution
		May of the
		Man

		Substances exist because they posses
147.		Substances exist because they posses
	a.	Material
	b.	Molecular bonds Molecular bonds
	c.	Volume
	d.	HEAT AND TO THE PROPERTY OF TH
148.		The equilibrium constant for a reaction A+2B \rightarrow 2C is 40. The equilibrium constant for
re	acti	on C→B +(1/2)A is
	a.	40
		$[1/40]^2$
		1/40
	d.	$1/[40]^{1/2}$
149.		In the reaction 2A +B \rightarrow A ₂ B, if the concentration of A is doubled and that of B is
ha		d, then the rate of the reaction will:
	a.	Increase 2 times
	b.	Increase 4 times
	c.	Decrease 2 times
	d.	Remain same Correct order among the following is To
150.		correct order among the ronowing is
	a.	1 erg> 1j > 1 cal
	b.	1 call > 1j > 1 erg
	c.	1 erg at call aljo
	d.	1) 2 call > 1 erg
151.		Which is the phenomenon who help us to calculate lattice energy of ionic crystals
	a.	
	b.	Enthalpy of formation
	c.	Born haber process
	d.	None
152.		The volatile metal is
	a.	Fe
	b.	Zn
	c.	Cu
	d.	Ag
153.		Gypsum on heating 120° C -130° C gives
	a.	Gypsum on heating 120° C -130° C gives Anhydrous salt Hereibudgets
	b.	Herninydrate
	c.	Monohydrate All Marian Monohydrate All Marian Monohydrate All Marian Mar
	d.	Dehydrates
		Man

154.	Substances exit because they posses
151.	a. Material
	b. Molecular bonds
	c. Volume
	d. Heat
155.	O_2 , N_2 are present in the ratio of 1:4 by weight the ratio of number of molecules is
133.	a. 7:32
	b. 1:4
	c. 2:1
	d. 4:1
156.	Chlorine upon reaction with NaOH in cold yields
150.	a. NaCl,NaClO, H₂O
	b. NaCl,NaClO ₃ , H ₂ O
	c. NaClO,NaClO ₃ , H ₂ O
	d. NaCl , H ₂ O
157.	Farming's salt is
137.	a. NaCl
	b. HF
	b. HF c. KHF ₂
	d. KClO ₃
158.	Which of the following is least polarizable?
	a. Ne
	b. He
	c. Xe
	d. Kr
159.	Transfer of heat from hot surrounding too cold refrigerator is an example of
	a. Spontaneous reaction
	b. Non spontaneous reaction
	c. First law of thermodynamics
	d. All of above
160.	Alkaline KMnO ₄ converts ethylene into
	a. Methanol
	b. Ethanol
	c. Ethane
	d. Ethylene glycol
161.	d. Ethylene glycol Which one of the following is not an isotope of hydrogen? a. Deuterium
	a. Deuterium
	b. Tritium
	c. Ortho hydrogen
	d. Wone

169.	a.	Following are fundamental ways of transferring energy Pressure and work
		Volume and pressure
	C.	Heat and work
170	d.	Pressure and treat
170.		A mixture of camphor and benzoic acid can be separated by
	a.	Fractional crystallization
	b.	Sublimation
	С.	Chemical method
4-4	d.	Extraction with solvent
171.		is a very difficult profession for a lazy person as you are.
		That copper mining
		It is copper mining
		Although copper mining
	d.	Copper mining
172.		She read
		Several chapters in the library last night
		Last night several chapters in the library
	c.	Last night in library several chapters
	d.	In the library several chapters last night
173.		He is taking some this semester
		Histories class
		History classes
		History class
	d.	None
174.		The death
	a.	wages of sins are
		Wage of sin are
	c.	Wages of sin is
	d.	Wage of sins are
175.		Murtaza scored in his last entry test The least points
		The least points
	b.	A least points
	C.	The fewest points
	d.	The fewer points

Read the passage carefully and answer the following question given at the end of passage.

Democratic societies from the earliest times have expected their governments to protect the weak against the strong. No 'era of good feeling' can justify discharging the police force or giving up the idea of public control over concentrated private wealth. On the other hand, it is obvious that a spirit of selfdenial and moderation on the part of those who hold economic power will greatly soften the demand for absolute equality. Men are more interested in freedom and security than in an equal distribution of wealth. The extent to which government must interfere with business, therefore, is not exactly measured by the extent to which economic power is concentrated into a few hands. The required degree of government interference depends mainly on whether economic powers are oppressively used, and on the necessity of keeping economic factors in a tolerable state of balance. But with the necessity of meeting all these dangers and threats to liberty, the powers of government are unavoidably increased, whichever political party may be in office. The growth of government is a necessary result of the growth of technology and of the problems that go with the use of machines and science. Since the government in our nation, must take on more powers to meet its problems, there is no way to preserve freedom except by making democracy more powerful.

- 176. The advent of science and technology has increased the NWINS COM
 - a. freedom of people
 - b. tyranny of political parties
 - c. powers of the government
 - d. chances of economic inequality
- 177. A spirit of moderation on the economically sound people would make the less privileged
 - a. unhappy with the rich people
 - b. more interested in freedom and security
 - c. unhappy with their lot
 - d. clamour less for absolute equality
- 178. The growth of government is necessitated to
 - a. make the rich and the poor happy
 - b. curb the accumulation of wealth in a few hands
 - c. monitor science and technology
 - d. deploy the police force wisely
- 179. 'Era of good feeling' in the second sentence refers to

 - d. time of police atrocities

180. an adequate level of police force a reasonable level of economic equality a reasonable amount of government interference d. a reasonable check on economic power 181. race: fatigue (analogy) a. fasting: hunger b. round:boxing flower: colors d. Hiking: gangrene 182. Strut: walking (analogy) a. Sweating: wrestling b. Hunter: fire Speech: stage d. Stammer: talk Industries: hardworking (analogy) 183. Kidumya.com a. Sky: blue b. Muddy: unclear Book :reading d. Pond: lake 184. Scholar: ignorant (analogy) Hardworking : lazy b. Knife: sword Courage: bold d. Luxury: wealth 185. Cool: frozen:: (analogy) a. Sharp:cut b. Warm: hot c. Hassock: stool d. Freedom: liberty 186. Admonish(synonym) a. Hypnotic Kidumya.com b. Honor Encourage d. scold e. Prepare Animosity (antonym) 187. a. Friendliness b. Anxiety Eagerness c. d. Reliability

mkidumya.com 188. Portly (synonym) Briskly a. Vessel b. Slender C. Entirely 189. Impetuous (antonym) Defensive b. Ardent Hobbyist d. Wary 190. Valid (antonym) Laud b. Feeble Due c. d. Dump 191. An index that estimate true rate of exchange among the currencies is a. Human development index b. Exchange rate Kidumya.com Purchasing rate d. None 192. LRR is stand for Lahore ring road b. Large ring road c. Lahore ring road d. Long ring road 193. Who is allegedly the current head of al-Qaida? Khalid sheikh MOHAMMAD b. Osama bin laden (late) c. Ayman ul Zawahiri d. None 194. Who is chancellor of Germany a. Joachim Gauck b. Angela Merkel c. John Atta Mills d. Laszlo Kover Which of the following academies grants the noble prize in literature? 195. a. London academy b. Norwegian academy Swedish academy d. New York academy

- - d. Bob Dylan
- Identify the current hajj year 198.
 - a. 1432
 - b. 1433
 - c. 1434
 - d. 1435
- Kidumya.com Faf Du plessis is player of 199.
 - a. Hockey
 - b. Cricket
 - Foot ball
 - d. Snooker
- Easy jet is air line of 200.

 - b. Malaysia
 - Spain
 - d. Turkey