Exercise 1.1

CALCULUS AND ANALYTIC GEOMETRY, MATHEMATICS 12

Function and Limits

Concept of Functions:

Historically, the term function was first used by German mathematician Leibnitz (1646-1716) in 1673 to denote the dependence of one quantity on another e.g.

1) The area "A" of a square of side "x" is given by the formula $A=x^2$. As area depends on its side x, so we say that A is a function of x.

The area "A" of a circular disc of radius "r" is given by the formula $A = \pi r^2$ As area depends on its radius r, so we say that A is a function of r.

3) The volume "V" of a sphere of radius "r" is given by the formula $V = \frac{4}{3}\pi r^3$. As volume V of a sphere depends on its radius r, so we say that V is a function of r.

The Swiss mathematician, Leonard Euler conceived the idea of denoting function written as y=f(x) and read as y is equal to f of x. f(x) is called the value of f at x or image of x under f.

The variable x is called independent variable and the variable y is called dependent variable of f.

If x and y are real numbers then f is called real valued function of real numbers.

Domain of the function:

If the independent variable of a function is restricted to lie in some set, then this set is called the domain of the function e.g. Dom of $f = \{0 \le x \le 5\}$

Range of the function:

The set of all possible values of f(x) as x varies over the domain of f is called the range of f e.g. $y = 100 - 4x^2$.

As x varies over the domain [0,5] the values of $y = 100 - 4x^2$ vary between y=0 (when x=5) and y = 100 (when x=0)

Range of $f = \{0 \le y \le 100\}$

Definition:

A function is a rule by which we relate two sets A and B (say) in such a way that each element of A is assigned with one and only one element of B. For example

is a function from A to B.

2

its Domain = $\{1,2,3\}$ and Range = $\{4,5\}$

In general:

A function f from a set 'X' to a set 'Y' is a rule that assigns to each element x in X one and only one element y in Y.(a unique element y in Y)

(f is function from X to Y)

If an element "y, of Y is associated with an element "x, of X, then we write y=f(x) &read as y" is equal to f of x. Here f(x) is called image of f at x or value of f at x.

Or if a quantity y depends on a quantity x in such a way that each value of x determines exactly one value of y. Then we say that y is a function of x.

The set x is called Domain of f. The set of corresponding elements y in y is called Range of f. we say that y is a function of x.

Exercise 1.1

Q1. (a) Given that
$$f(x) = x^2 - x$$

i.
$$f(-2) = (-2)^2 - (-2) = 4 + 2 = 6$$

ii.
$$f(0) = (0)^2 - (0) = 0$$

iii.
$$f(x-1) = (x-1)^2 - (x-1) = x^2 - 2x + 1 - x + 1 = x^2 - 3x + 2$$

iv.
$$f(x^2+4) = (x^2+4)^2 - (x^2+4) = x^4 + 8x^2 + 16 - x^2 - 4 = x^4 + 7x^2 + 12$$

(b) Given that
$$f(x) = \sqrt{x+4}$$

$$i) f(-2) = \sqrt{-2 + 4} = \sqrt{2}$$

$$ii) f(0) = \sqrt{0 + 4} = \sqrt{4} = 2$$

$$iii) f(x-1) = \sqrt{x-1+4} = \sqrt{x+3}$$

$$iv) f(x^2 + 4) = \sqrt{x^2 + 4 + 4} = \sqrt{x^2 + 8}$$

$$Q2. \quad Given that$$

$$i) \qquad f(x) = 6x - 9$$

$$f(a+h) = 6(a+h) - 9 = 6a + 6h - 9$$

$$f(a) = 6a - 9$$

Q2. Given that
i)
$$f(x) = 6x - 9$$

 $f(a+h) = 6(a+h) - 9 = 6a + 6h - 9$
 $f(a) = 6a - 9$
Now
$$\frac{f(a+h) - f(a)}{h} = \frac{(6a+6h-9) - (6a-9)}{h}$$

$$= \frac{6a+6h-9-6a+9}{h} = \frac{6h}{h} = 6$$
ii) $f(x) = \sin x$ given

$$\because \sin \theta - \sin \varphi = 2\cos\left(\frac{\theta+\varphi}{2}\right)\sin\left(\frac{\theta+\varphi}{2}\right)$$

$$f(a+h) = \sin(a+h)$$
 and $f(a) = \sin a$
Now
$$\frac{f(a+h) - f(a)}{h} = \frac{\sin(a+h) - \sin a}{h}$$

$$= \frac{1}{h} \left[\sin(a+h) - \sin a \right]$$

$$= \frac{1}{h} \left[2\cos\left(\frac{a+h+a}{2}\right) \sin\left(\frac{a+h-a}{2}\right) \right] = \frac{1}{h} \left[2\cos\left(\frac{2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \frac{1}{h} \left[2\cos\left(\frac{2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \right] = \frac{2}{h} \cos\left(a+\frac{h}{2}\right) \sin\left(\frac{h}{2}\right)$$

iii) Given that
$$f(x) = x^3 + 2x^2 - 1$$

$$f(a+h) = (a+h)^3 + 2(a+h)^2 - 1 = a^3 + h^3 + 3ah(a+h) + 2(a^2 + 2ah + h^2) - 1$$
$$= a^3 + h^3 + 3a^2h + 3ah^2 + 2a^2 + 4ah + 2h^2 - 1$$

$$f(a) = a^3 + 2a^2 - 1$$

Now
$$f(a+h)-f(a)$$

$$=\frac{a^3+h^3+3a^2h+3ah^2+2a^2+4ah+2h^2-1-(a^3+2a^2-1)}{h}$$

$$= \frac{1}{h} \left[a^3 + h^3 + 3a^2h + 3ah^2 + 2a^2 + 4ah + 2h^2 - 1 - a^3 - 2a^2 + 1 \right]$$

$$= \frac{1}{h} \left[h^3 + 3a^2h + 3ah^2 + 4ah + 2h^2 \right] = \frac{h}{h} \left[h^2 + 3a^2 + 3ah + 4a + 2h \right]$$

$$= h^2 + 3a^2 + 3ah + 4a + 2h = h^2 + 3ah + 2h + 3a^2 + 4a = h^2 + (3a + 2)h + 3a^2 + 4a$$

$$iv$$
) Given that $f(x) = \cos x$

so
$$f(a+h) = \cos(a+h)$$

and
$$f(a) = \cos a$$

Now
$$\frac{f(a+h)-f(a)}{h}$$

$$=\frac{\cos(a+h)-\cos a}{h}=\frac{1}{h}\left[-2\sin\left(\frac{2a+h}{2}\right)\sin\left(\frac{h}{2}\right)\right]=\frac{-2}{h}\sin\left(a+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)$$

Q3. (a) If 'x' unit be the side of square.

Then its perimeter
$$P = x + x + x + x = 4x$$
 (1)

$$A = Area = x \cdot x = x^2$$
 (2)

From (2)
$$x = \sqrt{A}$$
 putting in (1)

$$P = 4\sqrt{A}$$

Then Area =
$$A = \pi x^2$$
(1)

Circumference =
$$C = 2\pi x$$
 (2)

From (2)
$$x = \frac{C}{2\pi}$$
 Putting in (1)

$$A = \pi \left(\frac{c}{2\pi}\right)^2 = \pi \left(\frac{c^2}{4\pi^2}\right) = \frac{c^2}{4\pi}$$

$$A = \frac{c^2}{4\pi}$$
 :: Area is a function of Circumference

The Volume of Cube =
$$x \cdot x \cdot x = x^3$$
 (1)

Area of base =
$$A = x^2$$
 (2)

From (2)
$$x = \sqrt{A}$$
 Putting in (1)

$$V = \left(\sqrt{A}\right)^3 = \left(A\right)^{\frac{3}{2}}$$

Q5.
$$f(x) = x^3 - ax^2 + bx + 1$$

If
$$f(2) = -3$$

and

$$f(-1) = 0$$

$$(2)^3 - a(2)^2 + b(2) + 1 = -3$$

$$(-1)^3 - a(-1)^2 + (-1) + 1 = 0$$

$$8-4a+2b+1=-3$$

$$-1-a-b+1=0$$

$$9-4a+2b=-3$$

$$-a-b=0$$

$$12 - 4a + 2b = 0$$

$$a+b=0$$
(2)

Dividing by - 2

$$-6 + 2a - b = 0$$
....(1)

Solving(1) and (2)

$$2a-b-6 = 0$$

$$\frac{a+b}{3a-6} = 0$$

$$a = 2$$
 and $(2) \Rightarrow b = -a$ $\Rightarrow b = -2$

$$(2) \Rightarrow b = -c$$

$$b = -2$$

$$Q6. h(x) = 40 - 10x^2$$

(a)
$$x = 1 \sec$$

$$h(1) = 40 - 10(1)^2$$
$$= 30m$$

(b)
$$x = 1.5 \sec^2 x$$

$$h(1.5) = 40 - 10(1.5)^{2}$$

= 40 - 10(2.25) = 40 - 22.5 = 17.5m

$$(c) x = 1.7 \sec$$

$$h(1.7) = 40 - 10(1.7)^2$$

= $40 - 10(2.89) = 40 - 28.9 = 11.1m$

Does the stone strike the ground = ? ii)

$$h(x) = 0$$

$$40 - 10x^2 = 0$$

$$-10x^2 = -40 \implies x^2 = 4$$

$$x = \pm 2$$

Stone strike the ground after 2 sec.

Graphs of Function

Definition:

Ex # 1.1 – FSc Part 2

The graph of a function f is the graph of the equation y = f(x). It consists of the points in the Cartesian plane chose co-ordinates (x, y) are input - output pairs for f

Note that not every curve we draw in the graph of a function. A function f can have only one value f(x) for each x in its domain.

Vertical Line Test

No vertical line can intersect the graph of a function more than once. Thus, a circle cannot be the graph of a function. Since some vertical lines intersect the circle Twice. If 'a' is the domain of the function f, then the vertical line x = a will intersect the in the single point (a, f(a)).

Types of Function

ALGEBRAIC FUNCTIONS

Those functions which are defined by algebraic expressions.

Polynomial Functions: 1)

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 Is a

Polynomial Function for all x where $a_0, a_1, a_2, \dots, a_n$ are real numbers, and exponents are non-negative integer . a_n is called leading coefft of p(x) of degree n, Where $a_n \neq 0$

Degree of polynomial function is the max imum power of x in equation

$$P(x) = 2x^4 - 3x^3 + 2x - 1$$

$$deg ree = 4$$

Linear Function: if the degree of polynomial fn is '1, is called linear function $\underline{.i.e. p(x)} = ax + \underline{b}$

or ⇒ Degree of polynomial function is one.

$$f(x) = ax + b \qquad a \neq 0$$

$$y = 5x + b$$

Identity Function: For any set X, a function I: $X \to x$ of the form y = x or 3) f(x) = x. Domain and range of I is x. Note. I (x)= ax +b be a linear fn if a=1,b=0 then I(x)=x or y=x is called identity fn

Constant Function:

 $C: X \to y$ defined by $f: X \to y$ If f(x) = c, (const) then f is

called constant fn

e.g. $C: R \to R$

$$C(x) = a$$
 $\forall x \in X \text{ and } a \in y$

$$C(x) \equiv 2 \text{ or } v \equiv 2 \quad \forall x \in R$$

C(x) = 2 or y = 2 $\forall x \in R$ Ex # 1.1 – FSc Part 2

5) **Rational Function:**

$$R(x) = \frac{P(x)}{Q(x)}$$

P(x) and Q(x) are polynomial and $Q(x) \neq 0$ Both

e.g.
$$R(x) = \frac{3x^2 + 4x + 1}{5x^3 + 2x^2 + 1}$$

Domain of rational function is the set of all real numbers for which $Q(x) \neq 0$

6) **Exponential Function:**

A function in which the variable appears as exponent (power) is called an exponential function.

$$i)$$
 $y = a^x : x \in R$

$$ii)$$
 $y = e^x : x \in R \text{ and } e = 2.178$

$$iii) y = 2^x or y = e^{xh}$$

are some exponential functions.

Logarithmic Function: 7)

If
$$x = a^y$$
 then $y = \log_a^x x > 0$

$$\therefore a > 0 \quad a \neq 1$$

'a'is called the base of Logarithemic function

Then $y = \log_a^x$ is Logarithmic function of base'a'

i) If base=
$$10$$
then $y = \log_{10}^{x}$

is called common Logarithm of x

ii) If
$$base = e = 2.718$$

$$y = \log_e^x = \ln x$$
 is called natural \log

Hyperbolic Function: 8)

We define as

$$i) y = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

 $y = \sinh(x) = \frac{e^x - e^{-x}}{2}$ Sine hyperbolic function or hyperbolic sine function

$$Dom = \{x \mid x \in R\}$$
 and $Range = \{y \mid y \in R\}$

$$ii) y = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

 $y = \cosh(x) = \frac{e^x + e^{-x}}{2}$ is called hyperbolic cosine function \Rightarrow $x \in R, y \in [1, \infty)$

$$x \in R, y \in [1, \infty)$$

iii)
$$y = Tanhx = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh x}{\cosh x}$$

$$iv$$
) $y = \coth x = \frac{\cosh x}{\sinh x}$

$$y = \sec hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$
 $x \in R$

yi)
$$y = \cos e c h x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$
 $Dom = \{x \neq 0 : x \in R\}$

(Study in B.Sc level)

i)
$$y = \sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$$
 for $\forall x \in R$
ii) $y = \cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$ for $\forall x \in R$

ii)
$$y = \cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$
 for $\forall x \in R$ and $x > 1$

iii)
$$y = Tanh^{-1}x = \frac{1}{2}\ln\left|\frac{1+x}{1-x}\right|$$
 $x \neq 1$ and $|x| < 1$

iv)
$$y = \sec h^{-1}x = \ln\left(\frac{1}{x} + \frac{\sqrt{1 - x^2}}{x}\right)$$
 $0 < x \le 1$

$$y = \coth^{-1} x = \frac{1}{2} \left| \frac{x+1}{x-1} \right| \qquad |x| > 1$$

vi)
$$y = \cos e c h^{-1} x = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right)$$
 $x \neq 0$

10) **Trigonometric Function:**

Functions i) $y = \sin x$

Domain(x)

Range(y)

$$i) y = \sin x$$

All real numbers

 $\therefore -\infty < x + \infty$

 $\therefore -\infty < x < \infty$

$$-1 \le y \le 1$$

$$ii) y = \cos x$$

All real numbers

$$-1 \le y \le 1$$

$$iii$$
) $y = \tan x$

 $x \in R - (2k+1)\frac{\pi}{2}$

∵ 'R' all real numbers

$$k \in \mathbb{Z}$$

$$iv) y = \cot x$$

 $x \in R - k\pi$

 $k \in \mathbb{Z}$

$$v) y = \sec x$$

 $x \in R - (2k+1)\frac{\pi}{2}$

R - (-1,1)

R

 $k \in \mathbb{Z}$

 $k \in \mathbb{Z}$

or R - (-1 < y < 1)

$$vi) y = \cos ecx$$

 $x \in R - (k\pi)$

R - (-1 < y < 1)

Inverse Trigonometric Functions: 11)

Function

Dom(x)

Range(y)

$$y = \sin^{-1} x \Leftrightarrow x = \sin y$$

 $-1 \le x \le 1$

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$y = \cos^{-1} x \Leftrightarrow x = \cos y$$

$$-1 \le x \le 1$$

$$0 \le y \le \pi$$

$$y = Tan^{-1}x \Leftrightarrow x = Tany$$

$$x \in R$$

$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$or - \infty < x < \infty$$

$$y = Sec^{-1}x \Leftrightarrow x = \sec y$$

$$x \in R - (-1,1)$$

$$y \in [0,\pi] - \left\{ \frac{\pi}{2} \right\}$$

$$y = Co \sec^{-1} x \Leftrightarrow x = \cos ecy$$

$$x \in R - (-1,1)$$

$$y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \left\{0\right\}$$

$$y = Cot^{-1}x \Leftrightarrow x = \cot y$$

$$x \in R$$

$$0 < y < \pi$$

12) **Explicit Function:**

explicit function of x.

If y is easily expressed in terms of x, then y is called an

$$\Rightarrow y = f(x)$$

e.g.
$$y = x^3 + x + 1$$
 etc.

Parametric equation of circle

13) **Implicit Function:**

If x and y are so mixed up and y cannot be expressed in term of the independent variable x. Then y is called an implicit function of x. It can be f(x, y) = 0 $x^{2} + xy + y^{2} = 2$ etc. written as. e.g.

14) **Parametric Function:**

For a function y = f(x) if both x & y are expressed in another variable say 't' or θ which is called a parameter of the given curve. Such as:

$$x = at^2$$

Parametric parabola

$$y = 2at$$

 $x = a \cos t$ $v = a \sin t$

$$x^2 + v^2 = a^2$$

iii)

$$x = a \cos \theta$$
 Parametric equation of Ellipse

 $v = b \sin \theta$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$(x)$$
 $x = a \sec \theta$ Parametric equation of hyperbola

 $y = b \tan \theta$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $v^2 = 4a$

10

Exercise 1.1

Q7. Parabola
$$\Rightarrow$$
 $y^2 = 4ax$ (1)
 $x = at^2$ (i)

$$y = 2at$$
(ii)

To e
$$\liminf inating't' from(ii)$$
 $t = \frac{y}{2a}$ putting (i)

$$x = a \left(\frac{y}{2a}\right)^2 \implies x = a \left(\frac{y^2}{4a^2}\right) \implies x = \frac{y^2}{4a}$$

$$\Rightarrow y^2 = 4ax \qquad which is same as (1)$$

which is equation of parabola.

$$ii)$$
 $x = a\cos\theta, \quad y = b\sin\theta$

$$\Rightarrow \frac{x}{a} = \cos \theta$$
.....(i) and $\frac{y}{b} = \sin \theta$(ii) To e $\lim inating \theta from(i)$ and (ii)

Squaring and adding (i) and (ii)

$$\left(\frac{x}{a}\right)^{2} + \left(\frac{y^{2}}{b}\right) = 1 \qquad represent \ a \ Ellipse$$

$$iii) \qquad x = a \sec \theta, \qquad y = b \tan \theta$$

$$\frac{x}{a} = \sec \theta$$
....(i) $\frac{y}{b} = \tan \theta$...(ii)

Squaring and Subtracting (i) and (ii)

$$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = \sec^2\theta - \tan^2\theta \qquad \Rightarrow \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 + \tan^2\theta - \tan^2\theta \Rightarrow \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $\left| \cdot \right| \left| \cdot \right|$

Which is equation of hyperbola

 $Q8. (i) \sinh 2x = 2\sinh x \cosh x$

$$R.H.S = 2\sinh x \cosh x = 2\left(\frac{e^x - e^{-x}}{2}\right)\left(\frac{e^x + e^{-x}}{2}\right) = 2\left(\frac{e^{2x} - e^{-2x}}{4}\right) = \frac{e^{2x} - e^{-2x}}{2}$$

 $= \sinh 2x = L.H.S$

$$(i) \qquad \sec^2 hx = 1 - \tan^2 hx$$

$$R.H.S. = 1 - \tan^{2} hx = 1 - \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) = 1 - \left(\frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2}\right)$$
$$= \frac{e^{2x} + e^{-2x} + 2 - e^{2x} - e^{-2x} + 2}{e^{2x} + e^{-2x} + 2} = \frac{4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{1}{\left(e^{x} + e^{-x}\right)^{2}}$$

Ex # 1.1 – FSc Part 2

$$= \frac{1}{\cosh^2 x} = \sec h^2 x = L.H.S$$

$$iii$$
) $\cos eh^2 x = \coth^2 x - 1$

$$R.H.S = \coth^2 x - 1 = \left(\frac{e^x + e^{-x}}{e^x - e^{-x}}\right)^2 - 1 = \frac{\left(e^x + e^{-x}\right)^2 - \left(e^x - e^{-x}\right)^2}{\left(e^x - e^{-x}\right)^2} = \frac{\left(e^{2x} + e^{-2x} + 2\right) - \left(e^{2x} + e^{-2x} - 2\right)}{\left(e^x - e^{-x}\right)^2}$$

$$=\frac{e^{2x}+e^{-2x}+2-e^{2x}-e^{-2x}+2}{\left(e^{x}-e^{-x}\right)^{2}}=\frac{4}{\left(e^{x}-e^{-x}\right)^{2}}=\frac{1}{\left(e^{x}-e^{-x}\right)^{2}}=\frac{1}{\sinh^{2}x}=\cos ech 2x=L.H.S$$

$$Q9. \qquad f(x) = x^3 + x$$

replace x b v - x

$$f(-x) = (-x)^3 + (-x) = -x^3 - x = -[x^3 + x] = -f(x)$$

$$\Rightarrow$$
 $f(x) = x^3 + x$ is odd function

$$ii) f(x) = (x+2)^2$$

replace x by - x

$$f(-x) = (-x+2)^2 \neq \pm f(x)$$

$$f(x) = (x+2)^2$$
 is neither even nor odd

$$iii) f(x) = x\sqrt{x^2 + 5}$$

replace x b y - x

$$f(-x) = (-x)\sqrt{(-x)^2 + 5} = -\left[x\sqrt{x^2 + 5}\right] = -f(x)$$
 $f(x)$ is odd function.

$$iv$$
) $f(x) = \frac{x-1}{x+1}$

replace x by - x

$$f(-x) = \frac{-x-1}{-x+1} = \frac{-(x+1)}{-(x-1)} = \frac{x+1}{x-1} \neq \pm f(x)$$

f(x) is neither even nor odd function.

$$f(x) = x^{\frac{2}{3}} + 6$$

replace x by - x

$$f(-x) = (-x)^{\frac{2}{3}} + 6 = [(-x)^{2}]^{\frac{1}{3}} + 6 = x^{\frac{2}{3}} + 6 = f(x)$$

f(x) is an even function.

Ex # 1.1 – FSc Part 2

$$= \frac{x+1}{x-1} \neq \pm f(x)$$

f(x) is neither even nor odd function.

(v)
$$f(x) = x^{2/3} + 6$$

$$f(-x) = (-x)^{2/3} + 6$$

$$= [(-x)^2]^{1/3} + 6$$

$$= (x^2)^{1/3} + 6$$

$$= x^{2/3} + 6$$

$$= f(x)$$

f(x) is an even function.

(vi)
$$f(x) = \frac{x^3 - x}{x^2 + 1}$$

$$f(-x) = \frac{(-x)^3 - (-x)}{(-x)^2 + 1}$$

$$= \frac{-x^3 + x}{x^2 + 1}$$

$$= \frac{-(x^3 - x)}{x^2 + 1}$$

$$= -f(x)$$

 \therefore f(x) is an odd function.

Composition of Functions:

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by gof, from X to Z and is defined by.

$$(gof)(x) = g(f(x)) = gf(x) \text{ for all } x \in X$$

Inverse of a Function:

Let f be one-one function from X onto Y. The inverse function of f, denoted by f^{-1} , is a function from Y onto X and is defined by.

$$x = f^{-1}(y)$$
, $\forall y \in Y \text{ if and only if } y = f(x)$, $\forall x \in X$

EXERCISE 1.2

- Q.1 The real valued functions f and g are defined below. Find
 - (a) fog(x)
- (b) gof (x)
- (c) fof (x)
- (d) gog (x)
- (i) f(x) = 2x + 1; $g(x) = \frac{3}{x 1}$, $x \neq 1$