

(c)

Mechanics

MEASUREMENTS

Each	que	estion has four possible answe	rs, e	encircled the correct answer:
l .	The	study of physics deals with:		
	(a)	Laws of motion	(b)	The structure of space and time
	(c)	Force present in the nature	(d)	All of the above
2.	100 -000	science of physics based on:		
	(a)	Hypothesis	(b)	Experiments and measurements
	(c)	Only definition	(d)	Fundamental quantities
3.		branch of physics "wave mechanics" in	trodu	6 000 6 000
	(a)	Einstien	(b)	Max Planck
	(c)	De-broglie	(d)	Bohr
1.	The	branch of physics which deals with ear structure is called:	the n	uclear particles such as neutrons, protons and
	(a)	Particle physics	(b)	Solid state physics
	(c)	Plasma physics	(d)	Nuclear physics
5.		branch of physics which deals with t and nuclear field is called:	he pr	operties of gravitational field, electromagnetic
	(a)	Aerodynamics	(b)	Acorestics
	(c)	Hydrodynamics	(d)	Field theory
5.	The	idea that light is electromagnetic waves	was i	ntroduced by:
	(a)	Crooks	(b)	Fermi
	(c)	Maxwell Planck	(d)	Newton
7.	Law	s of physics expressed in terms of:		
	(a)	Base quantities	(b)	Derived quantities
	(c)	Both (a) & (b)	(d)	None of these
3.	The	study of nature is classified into:		
	(a)	Five branches	(b)	Two branches
	(c)	Six branches	(d)	None of these
).	Engi	neering physics, Astrophysics, Bio-physic	cs and	Geophysics are:
	(a)	Branches of Chemistry	(b)	Branches of Physics
	(c)	Applied physics	(d)	None of these
10.	4.	——is area of physics:		
	(a)	Chemical physics	(b)	Astrophysics

(d)

None of these

OBJE	CTIVE	E PHYSICS PART-I							
11.	The	The study of physics involves investigating such things as:							
	(a)	Structure of space and time							
	(b)	Laws of motion							
	(c)	The interaction between different pa	ırticles						
	(d)	All of the above							
12.	Phy	rsist started believing that every thing a	about pl	nysics has been discovered by the end of:					
	(a)	20 th Century	(b)	19 th Century					
	(c)	15 th Century	(d)	None of these					
13.	The	The overlapping of physics and other fields gave birth to:							
	(a)	Areas of physics	(b)	Areas of science					
	(c)	Interdisciplinary areas of physics	(d)	All of these					
14.		branch of physics which deals with nd waves is called:	the stud	ly of production, propagation and properties o					
	(a)	Heat and thermodynamics	(b)	Optics					
	(c)	Mechanics	(d)	Acoustics					
15.	The	branch of physics which deals with ve	s approaches the velocity of light is called:						
	(a)	Quantum physics	(b)	Wave mechanics					
	(c)	Relativistic mechanics	(d)	None of these					
16.	Exp	Experimentation and practical verification was first introduced by:							
	(a)	The Greek philosophers	(b)	The European scientists					
	(c)	The Muslim scientists	(d)	None of these					
17.	Phy	Physics based on Newtonian mechanics is called:							
	(a)	Astrophysics	(b)	Classical physics					
	(c)	Modern physics	(d)	Meta physics					
18.	Pase	Pascal is famous for his work:							
	(a)	Hydrostatics	(b)	Hydrodynamics					
	(c)	Laws of gases	(d)	Behaviour of elastic bodies					
19.	Sys	tem international (SI) was established	in:						
	(a)	1960	(b)	1967					
	(c)	1971	(d)	1930					
20.	The	basic quantity among the following is	S:						
	(a)	Torque	(b)	Force					
	(c)	Mass	(d)	Velocity					
21.	Wh	Which one of the scientist made some contribution to geometrical optics?							
	(a)	Archimedes	(b)	Pythagoras					
	(c)	Euclid	(d)	Plato					
22.		ich of the following is the derived qua	1000						
	(a)	Time	(b)	Area					
	(c)	Length	(d)	Mass					

OBJE	SIIVE	PHYSICS PARI-I							
23.	Whi	ch of the following is a set of suppleme	ntary	units:					
	(a)	Radian and kilogram	(b)	Stcradian and time					
	(c)	Mole and radian	(d)	Radian and steradian					
24.	The	SI unit for measuring plane angle is:							
	(a)	Radian	(b)	Steradian					
	(c)	Both (a) & (b)	(d)	None of these					
25.	The	present standard metre is defined as:							
	(a)	The distance between two points on an	ı alloy	y bar					
	(b)	(b) The length of mean solar day							
	(c)	The length equal to 165076373 waveled	ength	of krypton at 86 atm					
	(d)	The distance travel by the light in vacu	uum d	uring a time of $\frac{1}{299792458}$ second					
26.	SI u	nits of time was redefined in:							
	(a)	1900	(b)	1960					
	(c)	1967	(d)	1983					
27.	Phys	sical quantities are divided into:							
	(a)	Six categories	(b)	Three categories					
	(c)	Two categories	(d)	None of these					
28.	The	quantities which are defined in terms of	f other	physical quantities are called:					
	(a)	Derived quantities	(b)	Base quantities					
	(c)	Both (a) & (b)	(d)	None of these					
29. 9	The	basic units in system international (SI)	units a	are:					
	(a)	Three	(b)	Five					
	(c)	Two	(d)	Seven					
30.	The	fundamental quantities which form basis	ic for	M.K.S system are:					
	(a)	Mass, work and time	(b)	Mass, acceleration & time					
	(c)	Velocity, force and time	(d)	Mass, length and time					
31.9	Sup	plementary units are:							
	(a)	Five	(b)	Three					
	(c)	Two	(d)	One					
32. 9	The	SI units of solid angle is:							
	(a)	Radian	(b)	Steradian					
	(c)	Degree	(d)	None of these					
33.	The	system international (SI) built up from:							
	(a)	Derived units	(b)	Basic units					
	(c)	Supplementary units	(d)	All of these					
34.	Met	re is the basic unit of:							
	(a)	Length	(b)	Mass					
	(c)	Force	(d)	Velocity					

<u>3</u>

OBJE	CTIVE	PHYSICS PART-I			4	
35.	The	kilogram is the basic unit of:				
	(a)	Length	(b)	Mass		
	(c)	Weight	(d)	Time		
36.	One	mile is equal to:				
	(a)	1.625 km	(b)	1.609 km		
	(c)	1.325 km	(d)	1.850 km		
37.	One	inch is equal to:				
	(a)	1.32 cm	(b)	25.4 cm		
	(c)	2.10 cm	(d)	2.54 cm		
38.	One	foot is equal to:				
	(a)	31.90 cm	(b)	30.84 cm		
	(c)	30.48 cm	(d)	84.30 cm		
39.	Nun	nber of nano second in a year is:				
	(a)	3.1536×10^7	(b)	3.1536×10^9		
	(c)	3.1536×10^{16}	(d)	None of these		
40.	One	year is equal to:				
	(a)	$3.2 \times 10^7 \text{ sec}$	(b)	$2.25 \times 10^7 \text{ sec}$		
	(c)	$3.35 \times 10^7 \text{ sec}$	(d)	All of these		
41.9	Light year is the unit of:					
	(a)	Light	(b)	Time		
	(c)	Velocity	(d)	Distance		
42.	The	SI unit of force is:				
	(a)	Newton	(b)	Joule		
	(c)	Dyne	(d)	Volt		
43.	The	SI unit of work is:				
	(a)	Newton	(b)	Joule		
	(c)	Dyne	(d)	Volt		
44.	The	SI unit of power is:				
	(a)	Newton	(b)	Watt		
	(c)	Dyne	(d)	Ampere		
45.	The	SI unit of intensity of light is:				
	(a)	Joule	(b)	Mole		
	(c)	Kilomole	(d)	Candila		
46.	The	SI unit of amount of substance is:				
	(a)	Joule	(b)	Mole		
	(c)	Volt	(d)	Ohm		
47.	The	SI units of angular momentum is:				
	(a)	kg m/s	(b)	$kg m/s^2$		
	(c)	$kg m^2/s$	(d)	None of these		

OBJE	CTIVE	PHYSICS PART-I			<u>5</u>
48.	Tim	e taken by light to reach from sun to ear	rth is:		
	(a)	7 min 20 sec	(b)	8 min 20 sec	
	(c)	9 min 20 sec	(d)	None of these	
49.	Tim	e taken by light to reach from moon to	earth i	s:	
	(a)	1 min 20 sec	(b)	8 min 20 sec	
	(c)	2 min 20 sec	(d)	3 min 20 sec	
50.	Nun	nber of seconds in a day is:			
	(a)	9000 sec	(b)	86400 sec	
	(c)	43200 sec	(d)	3600 sec	
51.	The	unit of pressure in base units is:			
	(a)	kg/m-s ²	(b)	kg/ms	
	(c)	kg ms ²	(d)	None of these	
52.	Mea	an radius of the earth is:			
	(a)	6.4×10^9 mm	(b)	$6.4 \times 10^3 \text{ mm}$	
	(c)	$6.4 \times 10^6 \text{ m}$	(d)	None of these	
53.	Soli	d angle subtended at the centre by a sph	ere of	radius r is:	
	(a)	2π	(b)	6π	
	(c)	6π	(d)	4π	
54.	Ster	adian is defined by:			
	(a)	$\frac{\text{Area of a strip}}{\text{(radius)}^2}$	(b)	Arc length radius	
	(c)	$\frac{\text{Area}}{(\text{radius})^2}$	(d)	None of these	
55. 9	The	unit of thermodynamic temperature is:			
	(a)	K	(b)	C°	
	(c)	F°	(d)	None of these	
56.	One	atto is:			
	(a)	10^{-20}	(b)	10^{-16}	
	(c)	10^{-14}	(d)	10^{-18}	
57.	One	femto is:			
	(a)	10^{-16}	(b)	10^{-12}	
	(c)	10^{-15}	(d)	10^{-9}	
58.	8 8	pico is:			
	(a)	10^{-10}	(b)	10^{-12}	
	(c)	10^{-18}	(d)	10^{-10}	
59.	0 (5)			ses accuracy of the measuring instruments:	
ಕಾಲತ	(a)	Decreases	(b)	Increases	
	(c)	Remains unchanged	(d)	None of these	
	(-)		(-)		

OBJE	CTIVE	PHYSICS PART-I		6
60.	The	number of significant figures, with the	increa	ases degree of approximation:
	(a)	Decreases	(b)	Increases
	(c)	Remains unchanged	(d)	None of these
61.	The	number of significant figure in 8.80×10^{-2}	10 ⁶ kg	is:
	(a)	1	(b)	5
	(c)	3	(d)	6
62.	The	number 64.350 is rounded off as:		
	(a)	64.35	(b)	64.46
	(c)	64.36	(d)	64.4
63.	In so	cientific notation, the number 0.01 may	be wr	ritten as:
	(a)	10^{-2}	(b)	10^{-4}
	(c)	10×10^{-4}	(d)	1×10^{-4}
64.	The	number of significant figures in 0.8099	999 is:	
	(a)	2	(b)	5
	(c)	3	(d)	4
65.		ength = 0.233 m and $width = 0.178 m$, res is:	the m	ost accurate area expressed space of significant
	(a)	0.041 m^2	(b)	0.0415 m^2
	(c)	0.041747 m^2	(d)	None of these
66.	The	number 0.0001 in scientific notation is	:	
	(a)	1×10^4	(b)	10^{-3}
	(c)	10×10^4	(d)	10^{-4}
67.	One	mega is equal to:		
	(a)	10^6	(b)	10^{-6}
	(c)	10^3	(d)	109
68.	Sign	nificant figures in 0.000546 are:		
	(a)	3	(b)	4
	(c)	5	(d)	1
69.	The	error in a certain measurement occurs of	due to	:
	(a)	Negligence of a person	(b)	In appropriate technique
	(c)	Faulty apparatus	(d)	All of the above
70.	The	uncertainty may occur due to:		
	(a)	Limitation of an instrument	(b)	Natural variance of the object
	(c)	Personal negligence	(d)	All of the above
71.	Syst	ematic error occurs due to:		
	(a)	Instrument	(b)	Zero error of the instrument
	(c)	Both (a) & (b)	(d)	None of these

OBJE	CTIVE	PHYSICS PART-I			7
72.	The	least count of a unit meter rod is:			
	(a)	0.01 cm	(b)	0.01 mm	
	(c)	Cannot be zero	(d)	Can be zero	
73.	The	significant figure in 0.0010 are:			
	(a)	4	(b)	3	
	(c)	2	(d)	1	
74.	A pı	recise measurement is one which has:			
	(a)	Less precision	(b)	Maximum precision	
	(c)	Absolute precision	(d)	All of the above	
75.	Tota	al fractional uncertainty in the period T	= 2π^	$\sqrt{\frac{l}{g}}$ will be equal to:	
	(a)	Sum of fractional uncertainty	(b)	Different of uncertainties	
	(c)	Product of uncertainties in l and g	(d)	None of these	
76.	% u	ncertainty in the time period of a vibrat	ing bo	dy is calculated by:	
	(a)	Least count × Number of vibrations	(b)	Least count / Number of vibrations	
	(c)	Number of vibrations / Least count	(d)	$\frac{\text{Least count}}{\text{Number of vibration}} \times 100$	
77.	Dim	nensional analysis helps in:			
	(a)	Finding relation between quantities	(b)	To convert one unit into another	
	(c)	To confirm the correct answer	(d)	All of the above	
78.	The	dimension of force is:			
	(a)	$[ML^2T^{-2}]$	(b)	$[M^2L^{-2}T]$	
	(c)	$[MLT^{-2}]$	(d)	[MLT]	
79.	The	dimension [ML ² T ⁻²] belongs to:			
	(a)	Pressure	(b)	Energy	
	(c)	Momentum	(d)	Power	
80.	[ML	$L^{-1}T^{0}$] is the dimension of:			
	(a)	Surface density	(b)	Linear mass density	
	(c)	Volume mass density	(d)	Weight density	
81.	The	dimensions of weight are:			
	(a)	$[LT^{-2}]$	(b)	$[LT^{-1}]$	
	(c)	$[MLT^{-2}]$	(d)	$[ML^2T]$	
82. ♀	The	dimensions of power are:			
	(a)	$[ML^2T^{-3}]$	(b)	$[ML^2T^{-2}]$	
	(c)	$[\mathrm{MLT}^{-1}]$	(d)	None of these	
83.		dimension of density are:			
	(a)	$[\mathrm{ML}^{-2}]$	(b)	$[M^2L^{-2}]$	
	(c)	$[ML^{-3}]$	(d)	None of these	
	()				

8

OBJE	CTIVE	PHYSICS PART-I		9
96.	The	diameter of a nucleus is:		
	(a)	10^{-12} m	(b)	10^{-10} m
	(c)	10^{-20} m	(d)	10^{-15} m
97.	Whi	ch one of the following scientists made	some	contributions to geometrical optics:
	(a)	Euclid	(b)	Plato
	(c)	Archimedes	(d)	None of these
98.	The	founder of mathematical physics is:		
	(a)	Archimedes	(b)	Plato
	(c)	Euclid	(d)	Aristotle
99.	The	dimensions of $\left[\frac{1}{2} at^2\right]$ are that of:		
	(a)	Velocity	(b)	Force
	(c)	Time	(d)	Length
100.	Whi	ch one of the following Muslim Mather	natisi	on determined the earths circumference:
	(a)	Ibn-Sina	(b)	Al-Khawrizmi
	(c)	Al-Beruni	(d)	None of these
101.9	Sym	bolically solid angle is represented as:		
	(a)	rad	(b)	Sr
	(c)	θ	(d)	Cd
102. ♀	73.6	50 rounded off upto one decimal is:		
	(a)	73.6	(b)	73.7
	(c)	74.00	(d)	73.65
103. 9	[LT	⁻²] is demensional formula for:		
	(a)	Velocity	(b)	Force
	(c)	Acceleration	(d)	Momentum
104.		angle between two radii of a circle v th to the radius, is:	vhich	cut off on the circumference an arc, equal in
	(a)	57.3°	(b)	3'
	(c)	37.5°	(d)	None of these
105.	Soli	d angle is — dimensional ang	le.	
	(a)	2	(b)	3
	(c)	Both (a), (b)	(d)	None of these
106.	The	error is constant for — error.		
	(a)	Random	(b)	Systematic
	(c)	Both (a), (b)	(d)	All
107.	For	0.0036 no. of significant digits:		
	(a)	4	(b)	3
	(c)	2	(d)	1

OBJE	CTIVE	PHYSICS PART-I		10
108.	For	2.450 no. of significant digits:		
	(a)	4	(b)	3
	(c)	2	(d)	1
109.	For	1.40×10^3 , no. of significant digits:		
	(a)	3	(b)	4
	(c)	2	(d)	1
110.		sider two lengths of (10 ± 0.1) cm outrate:	t (20	\pm 0.1) cm measured by a ruler, which is more
	(a)	1 st	(b)	2 nd
	(c)	Same	(d)	None
111.	As F	$S = 6\pi\eta \text{rv}$. Dimensions of coefficient of	visco	sity η:
	(a)	$[ML^{-1}T^{-1}]$	(b)	$[MLT^{-1}]$
	(c)	$[ML^{-2}T^{-1}]$	(d)	[ML]
112.	Dim	ensions of specific gravity:		
	(a)	$[M^{o}L^{o}T^{o}]$	(b)	[MLT]
	(c)	$[ML^{-1}T]$	(d)	None
113.	Dim	ensions of specific heat:		
	(a)	$[L^2T^{-2}K]$	(b)	$[L^2T^{-2}K^{-1}]$
	(c)	$[MLT^{-2}]$	(d)	None
114.		ensions of refractive index:		
	(a)	[MLT]	(b)	$[M^{o}L^{o}T^{o}]$
	(c)	$[ML^{-1}T^{-2}]$	(d)	None
115.	The	time of 30 vibrations of a simple pendu second, then uncertainty is:	100.000	recorded by a stopwatch accurate upto one both
	(a)	0.3s	(b)	0.003s
	(c)	0.0003s	(d)	0.03s
116.	The	%age uncertainty for V and I is 2%	and 6	% respectively. Hence total uncertainty in the
	valu	e of $R = \frac{V}{I}$ is:		
	(a)	8%	(b)	$\frac{1}{3}\%$
	(c)	4%	(d)	3%
117.		energy of a photon of light of frequent are the base units of h?	icy f	is given by hf, where h is the Planck constant.
	(a)	kg ms ⁻¹	(b)	$kg m^2 s^{-1}$
	(c)	$kg m^2 s^{-2}$	(d)	$kg m^2 s^{-3}$

ANSWERS

1.	(d)	2.	(d)	3.	(c)	4.	(d)
5.	(d)	6.	(c)	7.	(c)	8.	(b)
9.	(b)	10.	(c)	11.	(d)	12.	(b)
13.	(c)	14.	(d)	15.	(c)	16.	(c)
17.	(b)	18.	(b)	19.	(a)	20.	(c)
21.	(a)	22.	(b)	23.	(d)	24.	(a)
25.	(c)	26.	(c)	27.	(c)	28.	(a)
29.	(d)	30.	(d)	31.	(c)	32.	(b)
33.	(d)	34.	(a)	35.	(b)	36.	(b)
37.	(d)	38.	(c)	39.	(c)	40.	(a)
41.	(d)	42.	(a)	43.	(b)	44.	(b)
45.	(d)	46.	(b)	47.	(c)	48.	(b)
49.	(a)	50.	(b)	51.	(a)	52.	(c)
53.	(d)	54.	(a)	55.	(a)	56.	(d)
57.	(c)	58.	(b)	59.	(b)	60.	(a)
61.	(c)	62.	(d)	63.	(a)	64.	(c)
65.	(a)	66.	(d)	67.	(a)	68.	(a)
69.	(d)	70.	(d)	71.	(d)	72.	(c)
73.	(c)	74.	(a)	75.	(a)	76.	(d)
77.	(a)	78.	(c)	79.	(b)	80.	(b)
81.	(c)	82.	(a)	83.	(c)	84.	(d)
85.	(c)	86.	(b)	87.	(a)	88.	(d)
89.	(c)	90.	(b)	91.	(a)	92.	(b)
93.	(a)	94.	(b)	95.	(a)	96.	(d)
97.	(a)	98.	(a)	99.	(d)	100.	(c)
101.	(b)	102.	(b)	103.	(c)	104.	(a)
105.	(b)	106.	(b)	107.	(c)	108.	(a)
109.	(a)	110.	(a)	111.	(a)	112.	(a)
113.	(b)	114.	(b)	115.	(b)	116.	(a)
117.	(b)						