CHAPTER 10

ALKYL HALIDE

MULTIPLE CHOICE QUESTIONS

1.		Which of the following alkyl halide is the most reactive towards the attacking nucleophile:						
	(a)	CH ₃ F	(b)	CH ₃ Cl				
	(c)	CH ₃ Br	(d)	CH ₃ I				
2.	Which of the following is not nucleophile:							
	(a)	H_2O	(b)	H_2S				
	(c)	BF_3	(d)	NH_3				
3.	Carbocation is a/an:							
	(a)	Electrophile	(b)	Nucleophile				
	(c)	Free radical	(d)	Group of atoms				
4.	1-bromobutane on reaction with alcoholic potassium hydroxide gives:							
	(a)	1-butano1	(b)	1-butene				
	(c)	2-butene	(d)	1-butyne				
5.	S _N 2 reaction can be best carried out with:							
	(a)	Primary alkyl halide	(b)	Secondary alkyl				
	(c)	Tetiary alkyl halide	(d)	All of above				
6.	For which mechanism the first step involved is the same:							
	(a)	E_1 and E_2	(b)	E ₂ and SN ₂				
	(c)	SN_1 and E_2	(d)	E_1 and SN_1				
7.	In the transition state of $S_{\rm N}2$ mechanism reaction with alkhyl halides, which of the following orbital hybridization is involved:							
	(a)	sp ³	(b)	sp^2				
	(c)	sp	(d)	dsp ²				

8.	Whi	Which of the following factors does not affect the S_N1 rate is:								
	(a)	Nucleophilicity of the attacking nucleophile								
	(b)									
	(c)	Solvent system								
	(d)	The nature of leaving group								
9.	Inβ	-elimination reaction, nucleophile attacks on:								
	(a)	α-hydrogen	(b)	β-hydrogen						
	(c)	Hydrogen	(d)	α-carbon						
10.	The	ne substances which donates a pair of electron to electrophile are call								
	(a)	Electrophile	(b)	Nucleophile						
	(c)	Lewis acid	(d)	Dibasic acid						
11. Which one the following will be present at the position of letter B										
	$C_2H_5Br \xrightarrow{KOH} A \xrightarrow{H_2/Pt} B$									
	7-3									
	(a)	Ethyl alcohol	(b)	Acetaldehyde						
13	(c)	Ethene	(d)	Ethane						
12.		nimolecular reactions, the rea		•						
	(a)	One step	(b)	Two steps						
12	(c)	Three steps	(d)	None of these						
13.	•	Grignard's reagent reacts to form alkane with:								
	(a)	Water	(b)	Ammonia						
1.4	(c)	Ethanol	(d)	All of these						
14.										
	(a)	Formaldehyde	(b)	Epoxide						
15	(c)	Acetaldehyde	(d)	Both (a) and (b)						
15.		banians are:	(b)	Nuclearbile						
	(a)	Electrophile Free radical	(b)	Nucleophile Group of atoms						
16.	(c)	ich substance is used to conver	(d)	•						
10.		SOCl ₂	(b)	PCl ₃						
	(a) (c)	HCl + ZnCl ₂	(d)	All of these						
17.	` '		` ′							
1/.	ւս (a)	Ethyl alcohol	(b)	ent hydrogen the product will be: Ethane						
	(a) (c)	Butane	(d)	Propane						
	(c)	Dutane	(u)	Tropano						

18.			omom		hvdrolv	zed h	v an	ueous	NaOH so	lution w	hich ion		
10.	When bromomethane is hydrolyzed by aqueous NaOH solution which io brings about the first stage of substitution:								men ion				
	(a)	Na^+				(b)	OH	_					
	(c)	Any	one			(d)	No	reaction	1				
19.	In primary alkyl halide the halogen atom is attached to a carbon which further attached to how many carbon atoms:							which is					
	(a)	One				(b)	Two	0					
	(c)	Thre	ee			(d)	Nil						
20.	Whi	Which one of the following is not associated with $S_{\rm N}2$ mechanism:											
	(a)	100% inversion of configuration											
	(b)) 2 nd order kinetics											
	(c)	(c) Tetiary alkyl halides											
	(d)	Change of hybridization from sp ³ to sp ² in transition state											
21.	Grignard reagent is reactive due to:												
	(a)	The	presen	ce of halog	en atom	(b)	The presence of Mg atom						
	(c)	(c) The polarity of $C - Mg$ bond				(d)) Electrophilic carbon						
22.	Reaction of C ₂ H ₅ MgBr with CO ₂ is an example of:												
	(a)	(a) Electrophilic substitution				(b) Nucleophilic substitution							
	(c) Electrophilic addition				(d)	(d) Nucleophilic addition							
23. Which one of the following is not a r						a nucl	nucleophile:						
	(a)	a) CH ₃ – NH ₂					(b) $CH_2 = CH_2$						
	(c)	e) OH-				(d)	(d) CH_3^+						
24.	Ace	Acetic acid can be obtained from CH ₃ MgI by treatment with:											
	(a)	H_2C)			(b)	ClN	H_2					
	(c)	CO_2				(d)	HC	НО					
				39.00	MENONONONONON	600000000000000	00000000	0/4%					
				2700	ans	we		വര					
1.	(0	d)	2.	(c)	3.	(a)	4.	(b)	5.	(a)		
6.	(0	1)	7.	(b)	8.	(a)		9.	(b)	10.	(b)		
11.	(0	1)	12.	(b)	13.	(d)		14.	(d)	15.	(b)		
16.	(c	d)	17.	(b)	18.	(d)	19.	(a)	20.	(c)		
21.	(0	:)	22.	(d)	23.	(d)	24.	(c)				
										-			