SHORT QUESTIONS

Q.1 What is order of reactivity of HX with ethene?

Ans. Ethene reacts with HX to form ethyl halide.

$$CH_2 = CH_2 + HX \longrightarrow CH_3 - CH_2X$$

The order of reactivity of HX is given below.

Q.2 What is substrate?

Ans. The molecule at which another substance attacks is called substrate. For example, when a nucleophile attacks on RX, the alkyl halide is substrate. When enzyme reacts with any species, it is also called substrate.

Q.3 In tertiary alkyl halides, S_N1 reaction takes place but not S_N2 reaction why?

Ans. In tertiary alkys halide, a nucleophile cannot attack directly at the electrophilic centre due to stearic hindrance. First of all ionization of alkylhalide takes place and carbocation is formed.

$$\begin{array}{ccc}
R & R R \\
 & \searrow & \swarrow \\
R & & \searrow & \swarrow \\
 & & & | & & | \\
 & & & & | & & |
\end{array}$$

Now nucleophile can attack from either side of carbon plane.

Q.4 Why reaction of ethylbromide with OH⁻ nucleophile is S_N2?

Ans. Reaction of ethyl bromide with OH^- is S_N2 because it is bimolecular reaction. The rate of reaction depends upon the concentration of nucleophile as well as substrate.

$$CH_3 - CH_2 - Br + OH^- \longrightarrow CH_3 - CH_2OH + Br^-$$

Rate = K[CH₃CH₂Br][OH⁻]

Q.5 Secondary alkyl halides undergo S_N1 or S_N2 reactions, while primary alkyl halides have S_N2 and tertiary alkyl halides have S_N1 reactions, why?

Ans. In secondary alkyl halides two alkyl group are attacked with α -carbon.

The reaction kinetic depends upon the size of alkyl group and nature of solvent used.

If alkyl groups have higher size, S_N1 reaction takes places due to stearic hindrance. This reaction takes place in two steps. Polar solvent also favours S_N1 mechanism. If alkyl groups have smaller size than S_N2 reaction takes place in single step. Non-polar solvent also favours the S_N2 mechanism.

Q.6 First step of E₁ and S_N1 mechanism is same but second is different. Explain it.

Ans. In E_1 or $S_N 1$ first step is formation of carbocation.

