Diffraction

Dispersion

(a)

(c)

OPTICAL INSTRUMENT

Each	que	estion has four possible answe	rs, e	encircled the correct answer:		
1.	Any	transparent medium bounded by one or	two	spherical surface, is called:		
	(a)	Lens	(b)	Mirror		
	(c)	Prism	(d)	None of these		
2.		minimum distance from the eye at whi	ch an	object appears to be distinct is called the least		
	(a)	Focal length	(b)	Distinct vision		
	(c)	Focus	(d)	All of above		
3.	A le	ns which is thicker from middle and thin	nner f	rom edges called:		
	(a)	Convex lens	(b)	Concave lens		
	(c)	Convex mirror	(d)	Concave mirror		
4.	A le	ns which is thinner from middle and thic	cker f	rom edges called:		
	(a)	Convex lens	(b)	Concave mirror		
	(c)	Convex mirror	(d)	Concave lens		
5.	The	ratio of the size of image to the size of	object	is called:		
	(a)	Magnification	(b)	Angular magnification		
	(c)	Classification	(d)	None of these		
6.		ratio of the angles subtended by the in ended by the object at the eye is called:	nage a	e as seen through the optical device to that angle		
	(a)	Linear magnification	(b)	Angular magnification		
	(c)	Tabulation	(d)	Calculation		
7.	A str	raight line joining the centers of curvatu	re of	e of two surfaces is called:		
	(a)	Principal axis	(b)	Radius of lens		
	(c)	Diameter of lens	(d)	Principal focus		
8.	_	A point where the incident rays of light converge or appears to diverge after passing through the lens is called:				
	(a)	Aperture	(b)	Focus		
	(c)	Optical centre	(d)	Pole of lens		
9.		en light passes from one medium to and nomenon is called:	other 1	medium, it is bend away from the normal. This		

Refraction

Polarization

(b)

(d)

The resolving power of an instrument can be expressed as:

(a) α_{min}

α

(b)

(c)

22.

None of these (d)

 α_{max}

Raleigh showed that for a light of wavelength λ through a lens of diameter D, the resolving 23. power is:

(a) $\alpha_{\min} = 1.22 \frac{\lambda}{D}$

(b) $\alpha_{\min} = 1.22 \frac{D}{\lambda}$

(c) $\alpha_{\min} = \frac{1.22}{\lambda D}$

(d) $\alpha_{\min} = 1.22 \lambda D$

24. In case of grating spectrometer, the resolving power R of the grating is defined as:

(a) $R = \lambda \cdot \Delta \lambda$

(b) $R = \frac{\lambda}{\Lambda \lambda}$

(c) $R = \frac{\Delta \lambda}{\lambda}$

(d) None of these

The resolving power in the mth order grating equals to: **25.**

> (a) $R = N \times m$

(b) $R = \frac{N}{m}$

(c) $R = \frac{m}{N}$

(d) $R = \frac{1}{N_{-m}}$

If an object is placed in front of convex lens then the image will be: 26.

Real and erect (a)

Real and inverted **(b)**

(c) Virtual and erect (d) Virtual

If an object is placed in front of concave lens then the image will be: 27.

Virtual and erect (a)

Real and inverted **(b)**

Real and erect (c)

(d) Virtual

If an object is placed at 2F from convex lens, the image is located behind the lens: 28.

Between lens and focus (a)

At 2F **(b)**

Between F and 2F (c)

(d) At the focus

29. Convex lens forms:

> (a) Real and erect image

- **(b)** Virtual and inverted image
- Real and inverted image
- None of these (d)

If an object is placed slightly more than 2F from a converging lens, the image is located behind 30. the lens:

At 2F (a)

Between F and 2F **(b)**

At the focus

None of these (d)

Magnification of a lens is positive when the image is: 31.

> Real and inverted (a)

Virtual and inverted **(b)**

(c) Real and erect

None of these (d)

Magnification of a lens is negative when the image is:

(a) Real and inverted

(b) Virtual and inverted

(c) Virtual and erect

(d) None of these

33. Magnifying power of an optical instrument is given by the ratio of:

(a) $\frac{\beta}{\alpha}$

32.

(b) $\frac{\alpha}{\beta}$

(c) $\frac{2\beta}{\alpha}$

(d) $\frac{2\alpha}{\beta}$

34. The magnification of the simple microscope if α and β are the angles subtended by the object when seen through the lens and when viewed directly is:

(a) $M = \frac{\beta}{\alpha}$

(b) $M = \frac{\alpha}{\beta}$

(c) $M = \alpha \beta$

(d) $M = \frac{1}{\alpha \beta}$

35. \Im The magnifying power of a simple microscope is:

(a) $M = 1 + \frac{f}{d}$

(b) $M = 1 + \frac{d}{f}$

(c) M = 1 + fd

(d) None of these

36. An optical device used for the large magnification of a very minute object is called:

(a) Simple microscope

(b) Compound microscope

(c) Convex lens

(d) Telescope

37. The convex lens used in compound microscope as objective has focal length:

(a) Large

(b) Short

(c) Same as eye-piece

(d) None of these

38. If a single convex lens is placed close to the eye then it can be used as:

(a) Simple microscope

(b) Compound microscope

(c) Spectrometer

(d) Telescope

39. The final image produced by the eye-piece of compound microscope is:

(a) Real and inverted

(b) Real and erect

(c) Virtual and inverted

(d) Virtual and erect

40. The magnifying power of a compound microscope is:

(a) $M = \frac{p}{q} \left(1 + \frac{d}{f_e} \right)$

(b) $M = \frac{q}{p} \left(1 + \frac{d}{f_e} \right)$

(c) $M = \frac{q}{p} \left(1 - \frac{d}{f_e} \right)$

(d) $M = pq \left(1 + \frac{d}{f_e}\right)$

OBJE	JIIVE	PHYSICS PARI-I									
41.	The	ne magnifying power of a compound microscope is:									
	(a)	a) Magnification of objective ÷ Magnification of eye-piece									
	(b)	Magnification of objective + Magnification of eye-piece									
	(c)	Magnification of objective × Magnification of eye-piece									
	(d)	Magnification of objective – Magnification of eye-piece									
42.	In co	ompound microscope, the focal length o	f eye-	-piece is:							
	(a)	Large	(b)	Small							
	(c)	Same as objective	(d)	None of these							
43.	The	eye-piece of a compound microscope ac	ets as:	:							
	(a)	Converging mirror	(b)	Converging lens							
	(c)	Diverging mirror	(d)	Diverging lens							
44.											
	(a)	Magnifying power of compound microscope decreased									
	(b)	Magnifying power of astronomical tele	escop	e increases							
	(c)	Length of astronomical telescope incre	eases								
	(d)	All of above									
45.	The	resolving power of a compound microso	cope o	depends upon:							
	(a)	The refractive index of the medium in	whicl	n the object is placed							
	(b)	The angle subtended by the objective l	he medium in which the object is placed the objective lens at the object ective lens								
	(c)	The diameter of the objective lens	refractive index of the medium in which the object is placed angle subtended by the objective lens at the object diameter of the objective lens								
	(d)	None of these									
46.	It is	It is an optical instrument used to very far off objects is called:									
	(a)	Telescope	(b)	Microscope							
	(c)	Convex lens	(d)	Spectrometer							
47.	A si	mple astronomical telescope consists of									
	(a) Two convex lens			Two concave lens							
	(c)	One convex and one concave	(d)	None of these							
48.	The	The image of a distant object viewed through telescope appears:									
	(a)	Larger	(b)	Brighter							
	(c)	Smaller	(d)	Dull							
49.	The	distance between the objective and eye-	piece	of a telescope in normal adjustment is:							
	(a)	$\mathrm{f_0}-\mathrm{f_e}$	(b)	$f_0 + f_e$							
	(c)	None of these									
50. 9	The	magnifying power of astronomical teles	cope	is:							
	(a)	$M = \frac{f_e}{f_e}$	(b)	$M = f_e f_0$							
	× ×	10	S. 12	£							
	(c)	$M = \frac{f_e}{f_0}$ $M = \frac{1}{f_e f_0}$	(d)	$\mathbf{M} = \mathbf{f}_{e}\mathbf{f}_{0}$ $\mathbf{M} = \frac{\mathbf{f}_{0}}{\mathbf{f}_{e}}$							

OBJE	CTIVE	PHYSICS PART-I		256					
51.	The	The resolving power of an astronomical telescope depends upon:							
	(a)	The focal length of the objective lens	(b)	The least distance of distinct vision of the observer					
	(c)	The focal length of the eye-piece	(d)	The diameter of the objective lens					
52.	The	The magnifying power of an instrument is expressed in:							
	(a)	Radians	(b)	Degrees					
	(c)	No units	(d)	None of these					
53.	For	For an astronomical telescope $f_0 + f_e = 105$ cm, $\frac{f_0}{f_e} = 20$ the focal lengths of objective and eye-							
	piec	piece are:							
	(a)	50 cm, 5 cm	(b)	210 cm, 25 cm					
	(c)	100 cm, 5 cm	(d)	None of these					
54.	The	The final image obtained by astronomical telescope is:							
	(a)	Erect	(b)	Virtual					
	(c)	Magnified	(d)	All of them					
55.		Lenses of focal lengths 100 cm and 5 cm are used as objective and eye-piece of an astronomical telescope, its length for normal adjustment is:							
	(a)	95 cm	(b)	105 cm					
	(c)	20 cm	(d)	None of these					
56.	An	An optical instrument used to study the properties of light:							
	(a)	Spectrometer	(b)	Simple microscope					
	(c)	Telescope	(d)	None of these					
57.	A g	A grating is placed on the turn table which is capable of rotating about a fixed:							
	(a)	Vertical axis	(b)	Horizontal axis					
	(c)	Both (a) and (b)	(d)	None of these					
58.		The component of the spectrometer which consists of a fixed metallic tube with a convex lens a one end and an adjustable slit is called:							
	(a)	Telescope	(b)	Collimator					
	(c)	Turntable	(d)	Grating					
59.	An instrument which consists of three parts that is collimator, telescope and turn table is called:								
	(a)	Compound microscope	(b)	Spectrometer					
	(c)	Telescope	(d)	None of these					
60.	In spectrometer, the function of collimator is to produce:								
	(a)	Parallel beam of light	(b)	Converging beam of light					
	(c)	Diverging beam of light	(d)	None of these					
61.	The ability of an instrument to reveal the minor details of the object under examination is its:								
	(a)	Magnification	(b)	Resolution					
	(c)	Resolving power	(d)	None of these					

97. Conventionally all the distances p, q, f are measured from — of the lens:

(a) Focus

(b) Optical centre

(c) Edges

(d) None of these

98. A lens of 2 cm focal length is to be used as a magnifying glass. Its magnification is:

(a) 13.5

(b) 2.5

(c) 0.5

(d) 12.5

99. The working of a compound microscope is based on the principle of:

(a) Reflection

(b) Refraction

(c) Both (a) and (b)

(d) None

100. In the formula, $\alpha_{\min} = \frac{1.22\lambda}{D}$, where D denotes:

(a) Diameter of lens

- **(b)** Power of the lens
- (c) Distance between source and the object (d) None of the

101. Maximum detail of an object can be seen by microscope when the object is illuminated by light of:

(a) Longer wavelength

(b) Short wavelength

(c) Infrared light

(d) None of these

102. The limit to which a microscope can be used to resolve details of an object depends upon:

- (a) Narrow objective and light of short wavelength
- (b) Narrow objective and light of short wavelength
- (c) Narrow objective and light of longer wavelength
- (d) None of these

103. Snell's law is described as:

(a) $n_1 \sin \theta_1 = n_2 \sin \theta_2$

(b) $n_2 \sin \theta_1 = n_1 \sin \theta_2$

(c) $n_1 \sin \theta_2 = n_2 \sin \theta_1$

(d) None of these

104. When $\theta_2 = 90^{\circ}$ and $\theta = \theta_c$ then Snell's law becomes:

(a) $\sin \theta_c = n_1 n_2$

(b) $\sin \theta_c = \frac{n_2}{n_1}$

(c) $\sin \theta_c = \frac{n_1}{n_2}$

(d) None of these

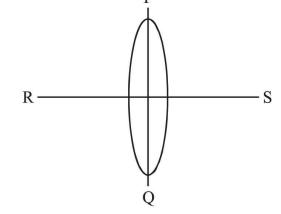
105. Power of any lens would be one dipotre when its focal length is:

(a) 1.0 m

(b) 1 cm

(c) 10 cm

(d) 2 m


106. The figure shows an equi-convex lens of focal length f. If the lens is cut along PQ. The focal length of each help will be:

(a) $\frac{f}{2}$

(b) f

(c) 2f

(d) $\frac{31}{2}$

OBJE	CTIVE	PHYSICS PART-I		261					
107.	A sp	A spectrometer is used to measure:							
	(a)	Refractive index of material of glass prism							
	(b)	Deviation of light by a glass prism							
	(c)	Wavelength of light							
	(d)	All of the above							
108.	The	The unit of power of a lens is:							
	(a)	Metre	(b)	Watt					
	(c)	Newton	(d)	Dioptre					
109.	The	minimum distance between an object ar	nd its	real image in a convex lens is:					
	(a)	2f	(b)	2.5f					
	(c)	3f	(d)	4f					
110.	An o	An object is placed at 18 cm from a converging lens of focal length 6 cm. The image formed is:							
	(a)	Real and inverted	(b)	Real and erect					
	(c)	Virtual and erect	(d)	Virtual and inverted					
111.		The image formed by a convex lens of focal length 10 cm is twice the size of the object. The position of the object will be:							
	(a)	20 cm	(b)	30 cm					
	(c)	50 cm	(d)	15 cm					
112.	In M	lichelson's experiment, the equation use	ed to f	find the speed of light is:					
	(a)	c = 16 fd	(b)	c = 16 f/d					
	(c)	c = 16d/f	(d)	c = fd/16					
113.	The	diameter of single mode step fibre core	is:						
	(a)	10 μm	(b)	30 μm					
	(c)	5 μm	(d)	100 μm					
114.	The	focal length 'f' and radius of curvature	are re	elated by:					
	(a)	f = 2R	(b)	R = 2f					
	(c)	R = f	(d)	None of the above					
115.		focal length of objective of telescope is piece should be:	60 cı	m. To obtain magnification of 20 focal length of					
	(a)	5 cm	(b)	4 cm					
	(c)	3 cm	(d)	2 cm					
116.	In compound microscope the magnification of object is M_o and magnification of eyepiece is Me. The magnifying power of compound microscope is:								
	(a)	$M_o + M_e$	(b)	$M_o \times M_e$					
	(c)	$M_e - M_e$	(d)	M_o/M_e					
	. ,								

OBJE	CTIVE	PHYSICS PART-I		262		
117.	To increase the resolving power of telescope we should use:					
	(a)	Wider objective	(b)	Wider eyepiece		
	(c)	Shorter objective	(d)	Shorter eyepiece		
118.	An observer moves towards a stationary plane minor at a peed of 4 ms ⁻¹ , with what speed what speed will his image move towards him?					
	(a)	2 ms^{-1}	(b)	4 ms^{-1}		
	(c)	$8~\mathrm{ms}^{-1}$	(d)	Image will stay at rest		
119.	Whi	ich mirror should be used to obtain a par	allel l	peam of light from a small lamp?		
	(a)	Plane mirror	(b)	Convex mirror		
	(c)	Concave mirror	(d)	Any one of the above		
120.		object of 2 cm tall is placed 15 cm from ge from the mirror?	conc	ave mirror of focal length 10 cm. How far is the		
	(a)	10 cm	(b)	-20 cm		
	(c)	-30 cm	(d)	-40 cm		
121.	Whi	ich one of the following phenomena can	not be	e explained by the wave theory of light?		
	(a)	Refraction	(b)	Total internal reflection		
	(c)	Diffraction	(d)	Photoelectric effect		
122.	Wha	at will be the colour of the sky as seem f	rom t	he earth if there were no atmosphere?		
	(a)	Black	(b)	Blue		
	(c)	Orange	(d)	Red		
123.	In vacuum light travels at a speed of $3 \times 10^8 \text{ ms}^{-1}$, what is the speed of light in glass of refractive index 1.5?					
	(a)	$1.5 \times 10^8 \text{ ms}^{-1}$	(b)	$2\times10^8~\mathrm{ms}^{-1}$		
	(c)	$3\times10^8\mathrm{ms}^{-1}$	(d)	$4.5 \times 10^8 \text{ ms}^{-1}$		
124.	An o	object is placed between two parallel mi	rrors.	The number of image formed is:		
	(a)	2	(b)	4		
	(c)	8	(d)	Infinite		

ANSWERS

1.	(a)	2.	(b)	3.	(0)	4.	(d)
	(a)		(b)		(a)	+	(d)
5.	(a)	6.	(b)	7.	(a)	8.	(b)
9.	(b)	10.	(a)	11.	(a)	12.	(b)
13.	(c)	14.	(d)	15.	(a)	16.	(a)
17.	(c)	18.	(a)	19.	(b)	20.	(a)
21.	(a)	22.	(a)	23.	(a)	24.	(b)
25.	(a)	26.	(b)	27.	(a)	28.	(b)
29.	(c)	30.	(b)	31.	(a)	32.	(c)
33.	(a)	34.	(a)	35.	(b)	36.	(b)
37.	(b)	38.	(a)	39.	(c)	40.	(b)
41.	(c)	42.	(a)	43.	(b)	44.	(d)
45.	(c)	46.	(a)	47.	(a)	48.	(a)
49.	(b)	50.	(d)	51.	(d)	52.	(c)
53.	(c)	54.	(d)	55.	(b)	56.	(a)
57.	(a)	58.	(b)	59.	(b)	60.	(a)
61.	(c)	62.	(d)	63.	(b)	64.	(d)
65.	(c)	66.	(d)	67.	(a)	68.	(b)
69.	(a)	70.	(a)	71.	(b)	72.	(a)
73.	(a)	74.	(c)	75.	(c)	76.	(b)
77.	(a)	78.	(d)	79.	(a)	80.	(b)
81.	(d)	82.	(a)	83.	(a)	84.	(c)
85.	(d)	86.	(c)	87.	(d)	88.	(a)
89.	(b)	90.	(c)	91.	(d)	92.	(d)
93.	(c)	94.	(b)	95.	(a)	96.	(c)
97.	(b)	98.	(a)	99.	(c)	100.	(a)
101.	(b)	102.	(a)	103.	(a)	104.	(c)
105.	(a)	106.	(c)	107.	(d)	108.	(d)
109.	(d)	110.	(a)	111.	(d)	112.	(a)
113.	(c)	114.	(b)	115.	(c)	116.	(b)
117.	(a)	118.	(c)	119.	(c)	120.	(c)
121.	(d)	122.	(a)	123.	(b)	124.	(d)
		,					