

BIOENERGETICS

Biology F.Sc. Part-I

1.	The quantitative study of energy relationship in the biological system is called:				
	(A)	Biochemistry	(B)	Biotechnology	
	(C)	Bioenergetics	(D)	Biophysics	
2.	Whi	ch of the following processes is	s not	oxidation reduction reaction?	
	(A)	Photosynthesis	(B)	Respiration	
	(C)	Photorespiration	(D)	None of above	
3.	The	compensation point comes in t	he:		
	(A)	Morning	(B)	Evening	
	(C)	Dawn	(D)	Night	
4.	The	biologist who gave the hypothesis	s that	plant spilt water and release water was:	
	(A)	Calvin	(B)	Krebs	
	(C)	Van Neil	(D)	Dixon	
5.	Whi	ch of the following is electron acc	eptor	during light reaction of photosynthesis?	
	(A)	NAD	(B)	FAD	
	(C)	NADP	(D)	NADPH	
6.	Chlo	prophyll is present in:			
	(A)	Stroma	(B)	Thylakoids	
	(C)	Granum	(D)	Intergranum	
7.	Whi	ch of the followings is not the	wavel	ength of visible light?	
	(A)	280 nm	(B)	380 nm	
	(C)	180 nm	(D)	580 nm	

8.	Which of the followings is not the wavelength of visible light?			
	(A)	Carotenoids	(B)	Carotenes
	(C)	Xanthophylls	(D)	None of the above
9.	Whi	ch of the following chlorophyl	ls is p	resent in bacteria?
	(A)	a	(B)	b
	(C)	c	(D)	None of the above
10.	Whi	ch of the following wavelength	ıs is le	east absorbed by the chlorphyull?
	(A)	Red	(B)	Blue
	(C)	Green	(D)	Orange
11.	Mat	ch haem group of haemoglobi	n with	one of the following:
	(A)	Chlorophyll	(B)	Chloroplast
	(C)	Porphyrin ring	(D)	Pyrrole
12.	Whi	ch of the followings is the sma	llest u	unit?
	(A)	Chlorophyll	(B)	Phytol
	(C)	Porphyrin ring	(D)	Pyrrole
13.	Whi	ch of the followings is tail of th	ie chl	orophyll molecule b?
	(A)	Chlorophyll	(B)	Phytol
	(C)	Porphyrin ring	(D)	Pyrrole
14.	How	many atoms of oxygen are pr	esent	in chlorophyll b?
	(A)	2	(B)	4
	(C)	6	(D)	8
15.	Whi	ch of the followings is not the	acces	sory pigment?
	(A)	Chlorophyll a	(B)	Chlorophyll b
	(C)	Carotene	(D)	Xanthophylls
16.	Firs	t action spectrum was obtained	d by:	
	(A)	Calvin	(B)	Krebs
	(C)	Van Neil	(D)	Engelmann

17.	The	percentage of photosynthesis i	n lan	d plai	nts is:			
	(A)	5%	(B)	10%				
	(C)	15%	(D)	20%				
18.		reduction of which of the tosynthesis?	follo	wing	molecules	takes	place	during
	(A)	Water	(B)	Carb	on dioxide			
	(C)	Glucose	(D)	Oxyg	gen			
19.		oxidation of which of the tosynthesis?	follo	wing	molecules	takes	place	during
	(A)	Water	(B)	Carb	on dioxide			
	(C)	Glucose	(D)	Oxyg	gen			
20.	Which of the following components of the photo system has chlorophyll b molecules?							
	(A)	Antenna complex	(B)	Reac	tion center			
	(C)	Primary electron acceptor	(D)	ETC				
21.	Phot	tosystem l absorbs which of the	e follo	owing	lights?			
	(A)	600 nm	(B)	680 ı	nm			
	(C)	700 nm	(D)	720 ı	nm			
22.	Photosystem ll absorbs which of the following lights?							
	(A)	600 nm	(B)	680 ı	nm			
	(C)	700 nm	(D)	720 ı	nm			
23.	The	splitting of water and release	of oxy	ygen d	luring ligh	t reactio	on is ca	lled:
	(A)	Hydrolysis	(B)	Phot	olysis			
	(C)	Oxidation	(D)	Redu	iction			
24.	The	synthesis of ATP during light	react	ion is	called:			
	(A)	Oxidative phosphorylation	(B)	Phot	ophosphory	lation		
	(C)	Substrate phosphorylation	(D)	None	e of the abo	ve		
25.	Whi	ch of the following electron accep	tors i	s abse	nt during c	yelic pho	sphory	lation?
	(A)	Cytochromes	(B)	Ferre	edoxin			
	(C)	NADP	(D)	PC				

26.	Which of the following mechanism is involved in the synthesis of ATP?			
	(A)	Reduction	(B)	Oxidation
	(C)	Chemiosmosis	(D)	None of above
27.	Whi	ch of the followings is irreleva	nt?	
	(A)	Calvin cycle	(B)	Dark reaction
	(C)	Light reaction	(D)	C ₃ pathway
28.	Mat	ch rubisco with one of the follo	owing	rs:
	(A)	RUBP	(B)	RBP
	(C)	RUBP carboxylase	(D)	RUBP reductase
29.	Whi	ch of the following is the end p	rodu	ct of calvin cycle?
	(A)	Glucose	(B)	PGA
	(C)	G3P	(D)	Strach
30.	The	G3P molecules formed during	Calv	in cycle are:
	(A)	3	(B)	4
	(C)	5	(D)	6
31.	The	carbon dioxide acceptor durin	ıg da	rk reaction is:
	(A)	Glucose	(B)	RuBP
	(C)	PGA	(D)	Rubisco
32.	Whi	ch of the following compound	s is fo	rmed during anaerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
33.	Whi	ch of the following compound	s is fo	rmed during aerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
34.	How	w much Glucose is converted in	to A	ΓP during anaerobic reaction?
	(A)	1%	(B)	2%
	(C)	3%	(D)	4%

26.	Which of the following mechanism is involved in the synthesis of ATP?			
	(A)	Reduction	(B)	Oxidation
	(C)	Chemiosmosis	(D)	None of above
27.	Whi	ich of the followings is irreleva	nt?	
	(A)	Calvin cycle	(B)	Dark reaction
	(C)	Light reaction	(D)	C ₃ pathway
28.	Mat	ch rubisco with one of the follo	owing	rs:
	(A)	RUBP	(B)	RBP
	(C)	RUBP carboxylase	(D)	RUBP reductase
29.	Whi	ich of the following is the end p	rodu	ct of calvin cycle?
	(A)	Glucose	(B)	PGA
	(C)	G3P	(D)	Strach
30.	The	G3P molecules formed during	g Calv	in cycle are:
	(A)	3	(B)	4
	(C)	5	(D)	6
31.	The	carbon dioxide acceptor durin	ıg da	rk reaction is:
	(A)	Glucose	(B)	RuBP
	(C)	PGA	(D)	Rubisco
32.	Whi	ich of the following compound	s is fo	rmed during anaerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
33.	Whi	ich of the following compound	s is fo	rmed during aerobic reaction?
	(A)	Pyruvic acid	(B)	Lactic acid
	(C)	Ethyl alcohol	(D)	None of above
34.	How	w much Glucose is converted in	to A	ΓP during anaerobic reaction?
	(A)	1%	(B)	2%
	(C)	3%	(D)	4%

44.	Resp	piratory chain is present in:		
	(A)	Cytosol	(B)	Matrix of mitochondria
	(C)	Inner membrane	(D)	Outer membrane of mitochondria
45.	Dur	ing respiratory chain, coenzyn	ne Q i	is reduced by:
	(A)	Cytochrome a	(B)	Cytochrome b
	(C)	Cytochrome c	(D)	Cytochrome a ₃
46.	Whi	ich of the following electron ac	cepto	rs is oxidized by an atom of oxygen?
	(A)	Cytochrome a	(B)	Cytochrome b
	(C)	Cytochrome c	(D)	Cytochrome a ₃
47.		number of ATPs produced ogen is:	lurin	g transfer of electron from NADH to
	(A)	1	(B)	2 () ()
	(C)	3	(D)	4
48.	The	energy capturing process is:		
	(A)	Photosynthesis	(B)	Respiration
	(C)	Metabolism	(D)	Bioenergetics
49.	The	energy releasing process is:		
	(A)	Photosynthesis	(B)	Respiration
	(C)	Metabolsim	(D)	Bioenergetics
50.	The	biological energy transformat	ion is	called:
	(A)	Photosynthesis	(B)	Respiration
	(C)	Metabolsim	(D)	Bioenergetics
51.	Whi	ich of the followings is not reac	ctant	in photosynthesis?
	(A)	CO_2	(B)	Water
	(C)	Light	(D)	Oxygen
52.	Whi	ich of the following is the most	impo	ortant factor for photosynthesis?
	(A)	CO_2	(B)	Water
	(C)	Light	(D)	Oxygen

				2101087 - 1011 - 1111			
53.	The	difference between photosynt	hesis	and respiration is:			
	(A)	Photosynthesis occurs at day ti	me w	hile respiration take place at night			
	(B)	Photosynthesis and respiration both occurs at daytime					
	(C)	Photosynthesis occurs at day w	hile 1	respiration occur day and night			
	(D)	None of the above					
54.	The	compensation point is a point	when	::			
	(A)	Intake of oxygen but not carbo	n dio	xide			
	(B)	Intake of carbon dioxide but no	ot oxy	/gen			
	(C)	Intake of both oxygen and carb	on di	oxide			
	(D)	None of the gases is taken insi-	de				
55.	Who	en does the rate of photosynthe	esis a	nd respiration become equal?			
	(A)	During day time	(B)	During night			
	(C)	At dawn	(D)	In the morning			
56.	The	source of oxygen during photo	osynt	hesis is:			
	(A)	Carbon dioxide	(B)	Water			
	(C)	Glucose	(D)	Light			
57.	cont	During the isotope tracer technique one group of plants was given H_2O containing O_{18} with CO_2 containing common oxygen O_{16} . The oxygen released during photosynthesis would be:					
	(A)	Radioactive					
	(B)	Not radioactive					
	(C)	Some amount radioactive some	e none	e-radioactive			
	(D)	None of the above					
58.	cont	During the isotope tracer technique second group of plant was given H_2C containing common oxygen with CO_2 containing O_{18} . The oxygen released during photosynthesis would be:					
	(A)	Radioactive					
	(B)	Not radioactive					
	(C)	Some amount radioactive some	e non-	-radioactive			
	(D)	None of the above					

59.	A reducing agent is that compound which:					
	(A)	Can remove electron from anot	ther co	ompound		
	(B) Can add electron into anther electron(C) Can absorb electron form another compound					
	(D)	None of the above				
60.	The	NADPH2 has:				
	(A)	Oxidizing power	(B)	Reducing power		
	(C)	Redox power	(D)	None of above		
61.	Mos	t of the photosynthetic enzyme	es are	present in:		
	(A)	Stroma of chloroplast	(B)	Thylakoids of chloroplast		
	(C)	Granum of chloroplast	(D)	Chlorophyll		
62.	Chlo	prophylls are present in the:				
	(A)	Stroma of chloroplast	(B)	Thylakoids of chloroplast		
	(C)	Granum of chloroplast	(D)	Intergranum		
63.	Che	miosmosis during photosynthe	sis ta	kes place in:		
	(A)	Stroma of chloroplast	(B)	Thylakoid membranes of chloroplast		
	(C)	Granum of chloroplast	(D)	Intergranum		
64.	In p	rokaryotes chlorophylls is pres	sent i	n the:		
	(A)	Stroma of chloroplast	(B)	Thylakoid membranes of chloroplast		
	(C)	Granum of chloroplast	(D)	Photosynthetic membranes		
65.	The	y pigment with red colour is:				
	(A)	Carotenoids	(B)	Carotenes		
	(C)	Xanthophylls	(D)	Chlorophyll		
66.	The	pigment with yellow colour is:				
	(A)	Carotenoids	(B)	Carotenes		
	(C)	Xanthophylls	(D)	Chlorophyll		
67.	whic	ch of the following wavelength	s is le	ast absorb by chlorophyll?		
	(A)	Red	(B)	Green		
	(C)	Yellow	(D)	Blue		

68.	Which of the followings is maximum absorbed by chlorophyll?			
	(A)	Red	(B)	Green
	(C)	Yellow	(D)	Blue
69.	The	plants appear green because:		
	(A)	They absorb green light		
	(B)	They do not absorb green light		
	(C)	The chlorophyll has originally	green	colour
	(D)	None of the above		
70.	The	leaves of the plants become ye	llow	due to deficiency of:
	(A)	Magnesium	(B)	Iron
	(C)	Sodium	(D)	Potassium
71.	Whi	ich of the followings take part	direct	tly in the photosynthetic reactions?
	(A)	Chlorophyll a	(B)	Chlorophyll b
	(C)	Chlorophyll c	(D)	Chlorophyll d
72.	Whi	ich of the followings in not an a	access	ory pigment?
	(A)	Chlorophyll a	(B)	Chlorophyll b
	(C)	Carotenes	(D)	Xanthophylls
73.	The	absorption spectrum of light i	s max	timum in the wavelength of:
	(A)	430 and 670 nm	(B)	330 and 660 nm
	(C)	430 and 690 nm	(D)	550 and 580 nm
74.		peaks of the action spectrader than the absorption spect		of photosynthesis are comparatively of chlorophylls due to:
	(A)	Chlorophyll a	(B)	Chlorophyll b
	(C)	Accessory pigment	(D)	None of the above
75.	The	photosynthesis carried out by	the to	errestrial plants is:
	(A)	5% of the total photosynthesis	(B)	10% of the total photosynthesis
	(C)	15% of the total photosynthesis	(D)	20 % of the total photosynthesis
76.	The	photosynthesis carried out by	the a	quatic plants is:
	(A)	70% of the total photosynthesis	(B)	80% of the total photosynthesis
	(C)	90% of the total photosynthesis	(D)	None of the above

77.	Air	contains carbon dioxide about	:				
	(A)	0.03 to 0.04%	(B)	0.02 to 0.03%			
	(C)	0.03 to 0.05%	(D)	None of above			
78.	CO_2	is converted into sugar. This	CO ₂ i	s:			
	(A)	Reduced	(B)	Oxidized			
	(C)	Both (A) and (B)	(D)	None of above			
79.	ATI	is synthesized during chemios	smosi	s in:			
	(A)	Antenna complex	(B)	Reaction centre			
	(C)	Primary electron acceptor	(D)	Electron transport chain			
80.	Cyc	lic phosphorylation starts whe	n:				
	(A)	There is less amount of glucose	(B)	There is less amount of NADH			
	(C)	There is less amount of ATP	(D)	None of the above			
81.	Whi	Which of the following processes does not take place during chemiosmosis?					
	(A)	Synthesis of NADH					
	(B)	Movement of H* through elect	ron tr	ansport chain			
	(C)	Synthesis of ATP					
	(D)	Movement of through ATP					
82.	Rub	Rubisco is:					
	(A)	Compound used during dark re	action	1			
	(B)	It is an electron acceptor					
	(C)	A coenzyme					
	(D)	An enzyme					
83.	Whi	ich of the followings is commor	ı in a	erobic anaerobic respiration?			
	(A)	Glycolysis	(B)	Krebs cycle			
	(C)	Electron transport chain	(D)	Pyruvic acid oxidation			
84.	Whi	ich of the following reactions d	oes n	ot take place in animals?			
	(A)	Glycolysis	(B)	Lactic acid fermentation			
	(C)	Alcoholic fermentation	(D)	Krebs cycle			
85.	Whi	ch of the following reactions tak	ke pla	ce during fatigue in the muscle of man?			
	(A)	Glycolysis	(B)	Lactic acid fermentation			
	(C)	Alcoholic fermentation	(D)	Krebs evele			

86.	In w	hich reaction free energy is	not req	uired?
	(A)	Respiration	(B)	Photosynthesis
	(C)	Fermentation	(D)	None of above
87.	Whi oxyg	0.	s takes	place in the presence and absence of
	(A)	Glycolysis	(B)	Lactic acid fermentation
	(C)	Alcoholic fermentation	(D)	Krebs cycle
88.	Whi	ch of the following reaction is	s includ	led in the oxidative phase of glycolysis?
	(A)	Glucose +ATP	(B)	Fructose +ATP
	(C)	PAGL 6NAD	(D)	None of above
89.	How	v many net ATPs are produc	ed duri	ing glycolysis?
	(A)	2	(B)	3 (9-6)
	(C)	4	(D)	5
90.	Dur	ing oxidation of which electr	on acco	eptor, ATP is not produced:
	(A)	Coenzyme Q	(B)	Cytochrome b
	(C)	Cytochrome c	(D)	Cytochrome a and a ₃
91.	Co-c	enzyme Q is in turn oxidized	by cyto	ochrome:
	(A)	a_3	(B)	a
	(C)	b	(D)	a
92.	Gly	colysis is the break down of:		
	(A)	Maltose	(B)	Lactose
	(C)	Fructose	(D)	Glucose
93.	The	power house of the cell is:		
	(A)	Ribosome	(B)	Mitochondria
	(C)	SER	(D)	RER
94.	Car	bon fixation refers to the init	ial inco	orporation of:
	(A)	Oxygen	(B)	Hydrogen
	(C)	CO_2	(D)	Carbon
95.	The	mechanism for ATP synthes	sis is:	
	(A)	Phosphorylation	(B)	Photosynthesis
	(C)	Chemosmosis	(D)	Chemosynthesis

96.	Carbon dioxide enters the leaves through:			
	(A)	Stroma	(B)	Cuticle
	(C)	Guard cells	(D)	Stomata
97.	Hae	me portion of haemoglobin co	ntain	s:
	(A)	Carbon atom	(B)	Iron atom
	(C)	Phosphorous atom	(D)	Magnesium atom
98.	Chle	orophyll absorbs light energy, v	which	is converted into chemical energy of:
	(A)	ATP	(B)	ATP & NADPH
	(C)	NADPH	(D)	None
99.	Chle	orophyll b is found alongwith o	chlore	ophyll a in all green plants and:
	(A)	Golden algae	(B)	Blue green algae
	(C)	Algae	(D)	Green algae
100.	Pyr	uvic acid is the end product of	:	
	(A)	None	(B)	Electron transport chain
	(C)	Glycolysis	(D)	Krebs cycle
101.	Stro	ma is fluid in the chloroplast v	which	surrounds the:
	(A)	Thylakoids	(B)	Grana
	(C)	Matrix	(D)	Envelop
102.	Whi	ch is a kind of chemical link b	etwee	en catabolism and anabolism?
	(A)	Double	(B)	ATP
	(C)	CO_2	(D)	Grana
103.	Van	Niel hypothesized that plants	split	water as a source of:
	(A)	Oxygen	(B)	ATP
	(C)	Hydrogen	(D)	Both A and C
104.	Cho	roplast has ——— memb	rane	envelop.
	(A)	No	(B)	single
	(C)	Hydrogen	(D)	Double
105.	Thy	lakoid sacs are stacked in colu	mns	called:
	(A)	Double	(B)	CO_2
	(C)	Grana	(D)	ATP

106.	Conventially "P" in ATP stands for:							
	(A)	ATP molecule	(B)	7.3 Kcal energy stored in it				
	(C)	Entire phosphate group	(D)	All these				
107.	Visi	Visible light ranges from about 380 to how many nm in wavelength?						
	(A)	755	(B)	745				
	(C)	750	(D)	760				
108.	Air	contains 0.03 – 0.04 % of:						
	(A)	Oxygen	(B)	Nitrogen				
	(C)	H_2O	(D)	CO ₂				
109.	Eacl	h ———— consist of light	gathe	ering antenna complex and a reaction				
	cent	er.						
	(A)	Grana	(B)	Stroma				
	(C)	Photo system	(D)	ATP				
110.	Dar	Dark reactions take place in the ———of chloroplast.						
	(A)	ATP	(B)	Yellow				
	(C)	Stroma	(D)	CO ₂				
111.	Oxy	gen released during photosynt	thesis	comes from:				
	(A)	Radioactive isotop	(B)	water				
	(C)	Air	(D)	Lumen				
112.	Wat	ater containing O ¹⁸ :						
	(A)	Water	(B)	Radioactive				
	(C)	Photosystem	(D)	Cyclic electron flow				
113.	Thy	lakoid interior space:						
	(A)	Water	(B)	Cyclic electron flow				
	(C)	Photosystem	(D)	Lumen				
114.	Pho	Photosynthetic pigments are organized into clusters:						
	(A)	Lumen	(B)	Radioactive				
	(C)	Water	(D)	Photosystem				
115.	Pho	to excited electrons take an alt	ernat	ive path:				
	(A)	Cyclic electron flow	(B)	Radioactive				
	(C)	Water	(D)	Lumen				

116.	Pyru	Pyruvic acid:							
	(A)	Radioactive	(B)	Mitochondria					
	(C)	Photon	(D)	End product of glycolysis					
117.	Ligh	Light behaves as wave as well as particles:							
	(A)	Photon	(B)	7.3 k.Cal.					
	(C)	Mitochondria	(D)	Pyruvate					
118.	Cris	Cristae:							
	(A)	7.3 k.Cal	(B)	End product of glycolysis					
	(C)	Mitochondria	(D)	Pyruvate					
119.	Brea	Break down of terminal phosphate of ATP:							
	(A)	Pyruvate	(B)	End product of glycolysis					
	(C)	7.3 k.Cal	(D)	Photon					
120.	Ace	Acetyl-CoA:							
	(A)	Mitochondria	(B)	Photon					
	(C)	End product of glycolysis	(D)	Pyruvate					
121.	Pho	tosynthetic prokaryotes:							
	(A)	Muscle cells of humans	(B)	Internal clock located in the guard cells					
	(C)	End product of glycolysis	(D)	Unstacked photosynthetic membrane					
122.	Daily Rhythmic opening and closing of stomata:								
	(A)	Internal clock located in the guard cells							
	(B)	Unstacked photosynthetic membrane							
	(C)	Muscle cells of humans							
	(D)	Laws of thermodynamics							
123.	Lac	Lactic acid form of anaeroblic respiration:							
	(A)	Laws of thermodynamics							
	(B)	Unstacked photosynthetic membrane							
	(C)	Internal clock located in the guard cells							
	(D)	Muscle cells of humans							

124. Biological energy transformation:

- (A) Electron transport intermediate
- (B) Muscle cells of humans
- (C) Laws of thermodynamics
- (D) Internal clock located in the guard cells

125. Cytochromes:

- (A) Unstacked photosynthetic membrane
- (B) Electron transport intermediate.
- **(C)** Laws of thermodynamics
- (D) Muscle cells of humans

Answers

Sr.	Ans.								
1.	(C)	2.	(C)	3.	(C)	4.	(C)	5.	(C)
6.	(A)	7.	(A)	8.	(D)	9.	(D)	10.	(C)
11.	(C)	12.	(D)	13.	(B)	14.	(C)	15.	(A)
16.	(D)	17.	(B)	18.	(B)	19.	(A)	20.	(A)
21.	(C)	22.	(B)	23.	(B)	24.	(B)	25.	(C)
26.	(C)	27.	(C)	28.	(C)	29.	(A)	30.	(D)
31.	(B)	32.	(D)	33.	(A)	34.	(B)	35.	(B)
36.	(B)	37.	(A)	38.	(D)	39.	(D)	40.	(B)
41.	(A)	42.	(C)	43.	(B)	44.	(C)	45.	(B)
46.	(D)	47.	(C)	48.	(A)	49.	(B)	50.	(D)
51.	(D)	52.	(C)	53.	(C)	54.	(D)	55.	(D)
56.	(B)	57.	(A)	58.	(B)	59.	(B)	60.	(B)
61.	(A)	62.	(B)	63.	(B)	64.	(D)	65.	(B)
66.	(D)	67.	(B)	68.	(A)	69.	(B)	70.	(A)
71.	(A)	72.	(A)	73.	(A)	74.	(C)	75.	(B)
76.	(B)	77.	(A)	78.	(A)	79.	(D)	80.	(C)
81.	(A)	82.	(D)	83.	(A)	84.	(C)	85.	(B)
86.	(B)	87.	(A)	88.	(C)	89.	(A)	90.	(A)
91.	(A)	92.	(D)	93.	(B)	94.	(C)	95.	(C)
96.	(D)	97.	(B)	98.	(B)	99.	(D)	100.	(C)
101.	(B)	102.	(B)	103.	(C)	104.	(D)	105.	(C)
106.	(C)	107.	(C)	108.	(D)	109.	(C)	110.	(C)
111.	(B)	112.	(B)	113.	(D)	114.	(D)	115.	(A)
116.	(D)	117.	(A)	118.	(C)	119.	(C)	120.	(D)
121.	(D)	122.	(A)	123.	(D)	124.	(C)	125.	(B)