

BIOLOGICAL MOLECULES

Biology F.Sc. Part-I

1.	Whi	ch one is a protein?			
	(A)	Cholesterol			
	(B)	ATP			
	(C)	There is no way of knowing w	ithout	ing the chemical reaction	
	(D)	Cellulase			
2.	Gly	ogen is an example of:			
	(A)	Both a polysaccharide and a ca	rbohy	ydrate	
	(B)	Phospholipid			
	(C)	Polysaccharide (only)			
	(D)	Carbohydrate (only)			
3.	A tr	iglyceride is a:			
	(A)	Protein	(B)	Nucleic acid	
	(C)	Simple sugar	(D)	Lipid	
4.	Whi	ch is an organic molecule?			
	(A)	NO_2	(B)	$C_6H_{12}O_6$	
	(C)	H_2O	(D)	H_2SO_4	
5.	Whi	ch class of molecule is the maj	or co	mponent of cell membrane?	
	(A)	Cellulose	(B)	Phospholipid	
	(C)	Wax	(D)	Triglyceride	
6.	Pep	tide bonds are found in:			
	(A)	Proteins	(B)	Inorganic compounds	
	(C)	Lipid	(D)	Carbohydrate	

7.	Gly	ycerol is the backbone molecule for:					
	(A)	ATP	(B)	DNA			
	(C)	Triglycerides	(D)	Disaccharides			
8.	Who	en a protein undergoes a hydro	olysis	reaction the end-products are:			
	(A)	Amino acid	(B)	Nucleotides			
	(C)	Fatty acid	(D)	Monosaccharide's			
9.	To p	oroduce Lactose:					
	(A)	Glucose and galactose must un	dergo	a dehydration reaction.			
	(B)	Glucose and fructose must und	lergo :	a hydrolysis reaction.			
	(C)	Two amino acids must form a	peptic	le bond.			
	(D)	Pairing of nitrogenous bases m	ust o	ccur between nucleotides.			
10.	The	biological function of a protei	n is d	etermined by its:			
	(A)	Primary structure	(B)	Quaternary structure			
	(C)	Secondary structure	(D)	Tertiary structure			
11.	Enz	ymes are:					
	(A)	Proteins	(B)	Triglycerides			
	(C)	Steroids	(D)	Polysaccharides			
12.	The	function of ATP is to:					
	(A)	Store energy					
	(B)	Act as a cataly					
	(C)	Determine the function of a cell					
	(D)	Act as a template for production of protein					
13.	All (organic compounds contain the	e elen	nents:			
	(A)	Iron and oxygen	(B)	Carbon and hydrogen			
	(C)	Carbon and nitrogen	(D)	Carbon and oxygen			
14.	All (of the following are organic co	mpou	nds except:			
	(A)	Water	(B)	Enzyme			
	(C)	ATP	(D)	Glucose			
15.	Whi	ch of the following is consider	ed to	be neutral?			
	(A)	Cytoplasm	(B)	HCl			
	(C)	Urine	(D)	Pure water			

16.	Glyceraldehyde is one example of a group of sugers called:				
	(A)	Pentose	(B)	Tetrose	
	(C)	Triose	(D)	Octose	
17.	Nitr	ogen bases such as choline, eth	anola	amine and serine are important of:	
	(A)	Sphingolipid	(B)	Phospholipid	
	(C)	Phosphatidycholine	(D)	Phosphodiester	
18.	Whi	ch molecule is used for short t	erm e	energy storage?	
	(A)	Chitin	(B)	Fat	
	(C)	Cellulose	(D)	Glycogen	
19.	The	functional group COOH is:			
	(A)	Basic	(B)	Never ionizea	
	(C)	Acidic	(D)	All A, B and C	
20.	Whi	ch of these is an example of hy	droly	sis?	
	(A)	Dipeptide + H ₂ O-amino acid +	Amii	no acid	
	(B)	Amino acid + Amino acid - Dipeptide + H ₂ O			
	(C)	Neither of these is correct			
	(D)	Both of these (A) and (B) are c	orrect	t	
21.	A fa	tty acid is unsaturated if it:			
	(A)	Contain double bonds	(B)	Contains an acidic group	
	(C)	Bonds veogen	(D)	Contain hydrogen	
22.	Whi	ch is not a hpid?			
	(A)	Polysaccharides	(B)	Wax	
	(C)	Steroid	(D)	Fat	
23.	Nucl	leotide contains:			
	(A)	Sugar, nitrogen base and carbo	n		
	(B)	Sugar, nitrogen – containing ba	ase an	d a phosphate molecule	
	(C)	Monomer for fat and Polysaccl	naride		
	(D)	Sugar, glycerol and phosphate			

24.	. ATP:			
	(A)	Has a helical structure	(B)	is an amino acid
	(C)	Provide enzyme for metabolism	(D)	is a high - energy molecule
25.	A ho	ormone is an example of which	func	tional class of proteins?
	(A)	Regulatory	(B)	Catalytic
	(C)	Contractile	(D)	Structural
26.	The	Sugar found in R.N.A. is:		
	(A)	Galactose	(B)	Fructose
	(C)	Ribose	(D)	Deoxyribose
27.	Ster	oids are classified as:		
	(A)	Lipids	(B)	Protein
	(C)	Carbohydrate	(D)	Nucleic acid
28.	Hen	noglobin is an example of whic	h fun	ctional class of protein?
	(A)	Regulatory	(B)	Comractile
	(C)	Transport	(D)	Structural
29.	In R	NA the Nitrogen base that tak	es the	e place of thymine is:
	(A)	Adenine	(B)	Guanine
	(C)	Cytosine	(D)	Uracil
30.	Whi	ch of the following represent a	ccura	ite pairing in D.N.A. molecules?
	(A)	Adenine to cytosine and guanir	ne to t	hymine
	(B)	Adenine to uracil and cytosine	to gu	anine
	(C)	Adenine to adenine and guanin	e to g	uanine
	(D)	Adenine to thymine and cytosis	ne to	guanue
31.	The	Suffix that denotes a sugar is:		
	(A)	ide	(B)	ase
	(C)	ose	(D)	amide
32.	The	melting points of palmitic acid	l is:	
	(A)	80°C	(B)	72°C
	(C)	63.1°C	(D)	70°C

33. Polar molecules:						
	(A)	Have a positive charge at one of	end ar	nd a negative charge at the other end		
	(B)	Are found at the ends of other molecules				
	(C)	Are pointed at both ends				
	(D)	None of the above				
34.	Met	abolic activities included:				
	(A)	Photosynthesis	(B)	Respiration		
	(C)	Digestions	(D)	All of the above		
35.	Lar	ge molecules with skeletons of	carbo	on atoms are said to be:		
	(A)	Carbonic	(B)	Inorganic		
	(C)	Carboxylate	(D)	Organic		
36.	The	Combining capacity of an ato	m or	ion is called:		
	(A)	pH	(B)	Valency		
	(C)	Elemental balance	(D)	Bonumg capacity		
37.	DNA	A model was suggested by:				
	(A)	Wilkins and Franklin	(B)	Hershey & Chase		
	(C)	Watson and crick	(D)	Char gaff		
38.	Con	jugated Histon Proteins are:				
	(A)	Transport protein				
	(B)	Only structured protein				
	(C)	Only regulatory protein				
	(D)	Structural and (Functional) reg	ulato	ry protein		
39.		ncn or bíology, which deals w nical process in the living orga		ne study of chemical components and , is called:		
	(A)	Ecology	(B)	Physiology		
	(C)	Biochemistry	(D)	Histology		
40.	Basi	is element of organic compoun	d is:			
	(A)	Water	(B)	Aldo – sugar		
	(C)	Solid	(D)	Carbon		

41.	Car	bohydrates are also called:		
	(A)	Saccharides	(B)	Glycogen
	(C)	Glycosidic bond	(D)	Ribofuranose
42.	The	sugar with aldehyde group is	called	l:
	(A)	Aldo-sugar	(B)	Keto-suger
	(C)	Acylglycerol	(D)	Glycogen
43.	Ribe	ose form a ring structure wher	in so	olution known as:
	(A)	Hydrolysis	(B)	Biochemistry
	(C)	Ribofuranose	(D)	Carbon
44.	Olig	osaccharides yield from two to	o ten 1	monosaccharides on:
	(A)	Polymerization	(B)	Hydrolysis
	(C)	Glycosidic bond	(D)	Condensation
45.	The	covalent bond between two m	onosa	ccharides called:
	(A)	Phophodiester linkage	(B)	Peptide bond
	(C)	Hydrophobic interactions	(D)	Glycosidic bond
46.	Star	ches have unbranched chains	of glu	cose and soluble in hot water are:
	(A)	Acylglycerol	(B)	Amylase
	(C)	Amylopectin	(D)	Herbivores
47.	Star	ches have branched chains and	d are i	insoluble in hot or cold water are:
	(A)	Amylopectin	(B)	Amylose
	(C)	Phospholipids	(D)	Acylglycerol
48.	Aniı	nal starch is:		
	(A)	Carbo	(B)	Amylose
	(C)	Glycogen	(D)	Amylopectin
49.	Cell	ulose is digested because of mi	croor	ganism in their tract by:
	(A)	Omnivores	(B)	Carnivores
	(C)	Herbivores	(D)	Macrophages
50.	The	nature of Lipids is:		
	(A)	Inorganic	(B)	Carbon
	(C)	Heterogeneous	(D)	Proteinacous

51.	51. These are composed of glycerol and fatty acids:			ty acids:			
	(A)	Phospholipids	(B)	Waxes			
	(C)	Acylglycerol	(D)	Terpenoids			
52.	In a	nimal fatty acids are:					
	(A)	Solid	(B)	Ringed			
	(C)	Straight	(D)	None of these			
53.		bility of fatty acids in organic increasing number of:	solv	ents and their melting points increase			
	(A)	Carbon	(B)	Hydrogen			
	(C)	Oxygen	(D)	All of the above			
54.	At r	oom temperature animal Fats	are:				
	(A)	Solid	(B)	liquids			
	(C)	Semi-solid	(D)	All of these			
55.	Fats	and oils are lighter than:					
	(A)	Air	(B)	Oil			
	(C)	Glycerol	(D)	Water			
56.	Deri	ivatives of phosphatidic acid a	re.				
	(A)	Waxes	(B)	Terpenoids			
	(C)	Phospholipids	(D)	Acylgycerols			
57.	Terp	Terpenoids are made up of simple repeating units called:					
	(A)	Isoprenoid units	(B)	Amino acid			
	(C)	Peptide unit	(D)	Glycosidic unit			
58.	Mos	t abunuam organic compound	l to b	e found in the cells is:			
	(A)	Proteins	(B)	Carbon			
	(C)	Nucleic acid	(D)	Lipids			
59.	Prot	tein's polymers are:					
	(A)	Nucleotides	(B)	Amino acid			
	(C)	Glucose	(D)	Fatty acids			
60.	Nun	nber of peptide bonds in a dipo	eptide	::			
	(A)	Four	(B)	Three			
	(C)	Two	(D)	One			

61.		ch structure of protein comp in a protein molecule?	rises	the number and sequence of amino
	(A)	Primary	(B)	Secondary
	(C)	Tertiary	(D)	Quatenary
62.	Eacl	h alpha chain of hemoglobin c	ontair	ns ———amino acid.
	(A)	141	(B)	142
	(C)	139	(D)	140
63.	Oxy prot	0 01	lood	cells exhibits quaternary structure of
	(A)	Hemoglobin	(B)	Myoglobin
	(C)	Insulin	(D)	Fibrinogen
64.		ertiary structure of protein po ning a shape:	lypep	tide chain bends and folds upon itself
	(A)	Ellipsoidal	(B)	Square
	(C)	Globular	(D)	Triangular
65.	In a	queous medium fibrous protei	ns ar	e:
	(A)	Soluble	(B)	least soluble
	(C)	Insoluble	(D)	readily soluble
66.	Glol	bular proteins are ellipsoidal o	r:	
	(A)	Helix	(B)	linear
	(C)	Fiber like	(D)	Spherical
67.	DNA	A and RNA are made up of:		
	(A)	Nucleoside	(B)	Amino acids
	(C-	Nucleotide	(D)	Nucleic acid
68.		carbon monosaccharide, a nit units of:	rogen	base and a phosphoric acid are three
	(A)	Nucleoside	(B)	Nucleotide
	(C)	Nucleic acid	(D)	Carbohydrates
69.	The	•	tion (of a base and a pentose sugar is called:
	(A)	Nucleic acid	(B)	ATP
	(C)	Nucleotide	(D)	Nucleoside

70.	DNA	A is?		
	(A)	Heredity material	(B)	proteinacous material
	(C)	Fatty material	(D)	Cellular material
71.	Nico	otinamide adenine dinucleotide	e abb	reviated as:
	(A)	DNA	(B)	NADH
	(C)	NAD	(D)	DAN
72.	The	amount of DNA is fixed for a	parti	cular species as:
	(A)	Centromere	(B)	Chromatids
	(C)	Chromosomes	(D)	Histones
73.	Hea	mophilus influenzae is?		
	(A)	Virus	(B)	Fungi
	(C)	prion	(D)	Bacteria
74.	RNA	A synthesis by DNA is known a)e.	
	(A)	Translation	(B)	Transcription
	(C)	Replication	(D)	Semi conservative replication
75.	t RN	A comprises about 10 to 20%	of th	e:
	(A)	Chromosome RNA	(B)	Conjugated RNA
	(C)	Cellular RNA	(D)	Globular RNA
76.		different molecule belonging ther to forms:	g to	different categories, usually combine
	(A)	Protein molecules	(B)	Cellular molecules
	(C)	Conjugated molecules	(D)	Lipids molecules
77.	The	nucleohistone is present in:		
	(A)	Chromosome	(B)	Centromere
	(C)	Nucleus	(D)	Homologues Chromosomes
78.		ch one pick amino acid and tr orm protein:	ansfe	er them to ribosome where they linked
	(A)	rRNA	(B)	tRNA
	(C)	mRNA	(D)	RNA

79.	Nonpolar organic molecule:					
	(A)	CO_2	(B)	NAD		
	(C)	H_2O	(D)	dGTP		
80.	Cov	alent bond:				
	(A)	Result when atoms complete the	neir el	ectronic shell by sharing electron		
	(B)	Result when atoms complete the	neir el	ectronic shell by donating electron		
	(C)	Both A and B				
	(D)	None of these				
81.	Can	e suger is a/an:				
	(A)	Polysaccharides	(B)	Oligosaccharides		
	(C)	Monosaccharides	(D)	None of these		
82.	A nu	ucleotide of DNA:				
	(A)	Serine	(B)	ATP		
	(C)	dGTP	(D)	CTP		
83.	Car	bon is:				
	(A)	Bivalent	(B)	Tetravalent		
	(C)	Trivalent	(D)	All of the above		
84.	Trai	nslation:				
	(A)	Synthesis of RNA	(B)	Three adjacent nuclcotide on mRNA		
	(C)	Synthesis of protein	(D)	Structual component of ribosome		
85.	Cod	on.				
	(A)	Structual component of ribosome				
	(B)	Histone				
	(C)	Three adjacent nuclcotide on n	nRNA	L.		
	(D)	Purine of DNA				
86.	Ade	nine:				
	(A)	Synthesis of protein	(B)	Histone		
	(C)	Purine of DNA	(D)	Pyrimidine of DNA		

87.	rRN	rRNA:						
	(A)	Structual component of ribosor	me					
	(B)	Histone						
	(C)	Purine of DNA						
	(D)	Synthesis of protein						
88.	Prot	Protein attach to chromosome:						
	(A)	Three adjacent nuclcotide on mRNA						
	(B)	Purine of DNA						
	(C)	Histone						
	(D)	Structual component of riboson	me					
89.	Deo	xyribose:						
	(A)	Pentose sugar	(B)	Pyrimidine of DNA				
	(C)	DNA	(D)	DNA model				
90.	Con	Contain an anticodon:						
	(A)	tRNA	(B)	DNA model				
	(C)	mRNA	(D)	DNA				
91.	Wat	tson and crick:						
	(A)	DNA	(B)	DNA model				
	(C)	Nucleotide	(D)	Pentose sugar				
92.	Dou	Double helix:						
	(A)	DNA	(B)	Pentose sugar				
	(C)	tRNA.	(D)	DNA model				
93.	Nuc	leoside + Phosphate:						
	(A)	tRN ₄ .	(B)	DNA				
	(C)	Nucleotide	(D)	mRNA				
94.	Ster	iodes and triglycerides are exa	mple	:				
	(A)	DNA	(B)	Lipids				
	(C)	pH7	(D)	Disaccharide				
95.	Star	rch:						
	(A)	pH7	(B)	Give blue colour with iodine				
	(C)	Phospholipid	(D)	Monosaccharide				

96.	Suci	rose and Lactose are example o	of:	
	(A)	Lipids	(B)	Phospholipid
	(C)	Monosaccharide	(D)	Disaccharide
97.	Glu	cose and fructose are example	of:	
	(A)	Monosaccharide	(B)	pH7
	(C)	Lipids	(D)	Disaccharide
98.	Nut	ral solution:		
	(A)	Disaccharide	(B)	pH7
	(C)	Lipids	(C)	Give blue colour with iodine
99.	The	cell energy currency:		
	(A)	(CH ₂ O) _n	(B)	Fibrous protein
	(C)	ATP	(D)	Water
100.	Car	boxyl group:		
	(A)	СООН	(B)	Fibrous protein
	(C)	ATP	(D)	Globular protein
101.	Fibr	in:		
	(A)	СООН	(B)	ATP
	(C)	Fibrous protein	(D)	Globular protein
102.	Mor	nosaccharide:		
	(A)	СООН	(B)	(CH ₂ O) _n
	(C)	Water	(D)	Fibrous protein
103.	Act	as solvent for ionic compound	s in b	ody fluid:
	(A)	Water	(B)	Globular protein.
	(L,	AıP	(D)	СООН
104.		branch of biology that deals ecules that make up the body o		the study of in-organic and organic ving organism is:
	(A)	Pharmacology	(B)	Biochemistry
	(C)	Both (A) and (B)	(D)	Pharmaco-dynamics
105.	The	six bio-elements that make up	98%	of protoplasm are:
	(A)	C, H, O, N, Mg ⁺ , K ⁺	(B)	C, H, O, N, Mg ⁺ , Na ⁺
	(C)	C, H, O, N, Cl ⁻ , K ⁺	(D)	C, H, O, N, P, S

106. What is shown in the diagram below?

- (A) Even charge distribution
- (B) Uneven charge distribution
- (C) Polarity within water molecule (D) Both (B) and (C)
- 107. Atoms form bonds by:
 - (A) Gaining of electrons
- **(B)** Losing of electrons
- (C) Sharing of electrons
- **(D)** All (A), (B) and (C)
- 108. If atoms of different elements combine, the molecule can also be called a:
 - (A) Polymer

(B) Monomer

(C) Compound

- (D) All choices are incorrect
- 109. A ———— occurs as bonds are formed or broken between atoms, ions or molecules.
 - (A) Chemical reaction
- (B) Physical reaction
- (C) Thermal reaction
- **(D)** None of the above
- 110. Electrolytes that release hydrogen ions in water are called:
 - (A) Acids

(B) Bases

(C) Amphoteric

- (D) All options are correct
- 111. It is the most abundant compound in living organisms and makes up twothirds of the weight of adults:
 - (A) Protein

(B) Water

(C) Carbohydrate

- (D) Nucleic acid
- 112. ATP releases energy when:
 - (A) It undergoes a condensation reaction
 - **(B)** A hydroxyl group is added to it
 - (C) A phosphate group is added to it
 - (D) A phosphate group is removed from it

113.	A fa	tty acid is a compound made o	of a cl	nain of carbon atoms plus:
	(A)	An acid group at one end	(B)	Acid group at both ends
	(C)	An amino group	(D)	Amino group at both ends
114.		ond that forms between a pecule and a negative charged r		vely charged hydrogen atom of one of another molecule is an:
	(A)	Ionic bond	(B)	Hydrogen bond
	(C)	Covalent bond	(D)	Basic bond
115.	Deh	ydration and hydrolysis i		ons involve removing or adding
	(A)	CH and NH ₂	(B)	C and H
	(C)	-COOH and H	(D)	OH and H
116.	A ch	nemical "buffer":		
	(A)	can donate a H ⁺ when the solution	tion b	ecomes too basic
	(B)	can absorb a H+ when the solution	tion b	ecomes too acidic
	(C)	is utilized in living systems to	maint	ain correct pH
	(D)	all of the above are correct		
117.	Nuc	leotides have a nitrogenous va	se att	ached to a sugar at the:
	(A)	1' carbon	(B)	3' carbon
	(C)	4' carbon	(D)	5' carbon
118.	wer		-	th having the formula C ₁₆ H ₂₂ COOH, C ₃ H ₈ O ₃), the resulting molecule would
	(A)	$C_{48}H_{68}O_6$	(B)	$C_{48}H_{74}O_6$
	-	C ₅₄ H ₇₁ O ₆	(D)	$C_{54}H_{68}O_{9}$
119.	This	aminoacid is called:		
		CH ₃ NH ₂ —CH—COOH		
	(A)	Glycine	(B)	Alanine
	(C)	Leucine	(D)	Valine

120.	Mor	osaccharides contain carbon a	atoms	:
	(A)	3-7	(B)	3-6
	(C)	3-9	(D)	3-10
121.	Stea	rin is:		
	(A)	Fatty acid	(B)	Saturated acylglycerol
	(C)	Unsaturated acylglycerol	(D)	None of these
122.	Ene	rgy absorbed to change water	from	liquid to gas is called:
	(A)	Latent heat of fusion	(B)	High surface tension
	(C)	Heat of vaporization	(D)	High heat capacity
123.	The	sources of carbohydrates are g	reen	plants. These are primary product of:
	(A)	Respiration	(B)	Catabolism
	(C)	Photosynthesis	(D)	All (A), (B) and (C)
124.	It is	most abundant carbohydrate	in the	e nature:
	(A)	Glycogen	(B)	Chun
	(C)	Lignin	(D)	Celluiose
125.	It is	the most abundant organic co	mpor	nent in living cells:
	(A)	Lipid	(B)	Carbohydrate
	(C)	Water	(D)	Protein
126.	Eacl	h of the 20 naturally occurring	amii	no acids has a different:
	(A)	NH ₂ group	(B)	-COOH group
	(C)	R group	(D)	–OH group
127.	The	sum of all the chemical reaction	on tha	at occurs in the body is known as:
	(A)	Anabolism	(B)	Metabolism
	(C)	Catabolism	(D)	Differentiation
128.	Whi	ch is an organic molecule?		
	(A)	H_2O	(B)	H ₂ SO ₄
	(C)	NO_2	(D)	$C_6H_{12}O_6$
129.	Whi	ch class of molecule is the maj	or co	mponent of cell membrane?
	(A)	Phospholipid	(B)	Cellulose
	(C)	Wax	(D)	Triglyceride

130.	Pept	tide bonds are found in:		
	(A)	Protein	(B)	Carbohydrate
	(C)	Lipids	(D)	Inorganic compounds
131.	Gly	cerol is the back bone molecule	for:	
	(A)	Disaccharides	(B)	DNA
	(C)	Triglycerides	(D)	ATP
132.	Who	en a protein undergoes a hydro	olysis	reaction the end-products are:
	(A)	Amino acids	(B)	Monosaccharides
	(C)	Fatty acids	(D)	Nucleotides
133.	Whi	ch of the following is consider	ed to	be neutral?
	(A)	Urine	(B)	Pure water
	(C)	Cytoplasm	(D)	HCl
134.	The	functional group -COOH is:		
	(A)	Acidic	(B)	Basic
	(C)	Never ionized	(D)	all options are correct
135.	Whi	ch of these is an example of hy	droly	vsis?
	(A)	Amino acid + Amino acid $\rightarrow \Gamma$	Dipept	$de + H_2O$
	(B)	Dipeptide + H ₂ O → Amino aci	id + A	mino acid
	(C)	Both (A) and (B)		
	(D)	Neither of these is correct		
136.	A fa	tty acid is unsaturated if it:		
	(A)	Contains hydrogen	(B)	Contains double bonds
	(C)	Contains an acidic group	(D)	Bonds to glycogen
137.	A ho	ormone is an example of which	func	tional class of proteins:
	(A)	Contractile	(B)	Structural
	(C)	Regulatory	(D)	Cyclic
138.	The	sugar found in RNA is:		
	(A)	Fructose	(B)	Galactose
	(C)	Deoxyribose	(D)	Ribose

139.	Ster	oids are classified as:		
	(A)	Carbohydrates	(B)	Lipids
	(C)	Proteins	(D)	Nucleic acids
140.	Hem	oglobin is an example of which	h fun	ctional class of protein:
	(A)	Contractile	(B)	Structural
	(C)	Regulatory	(D)	Transportive
141.	In R	NA the Nitrogen base that tak	es the	e place of thymine is:
	(A)	Adenine	(B)	Cytosine
	(C)	Uracil	(D)	Guanine
142.	The	Suffix that denotes a sugar is:		
	(A)	ase	(B)	ose
	(C)	ide	(D)	amide
143.		different molecule belonging ther to form:	g to o	different categories, usually combine
	(A)	Homomer molecule	(B)	Macro molecule
	(C)	Conjugated molecule	(D)	All options are correct
144.	It is mus	<u> </u>	at ac	cumulates in the vertebrate liver and
	(A)	Cellulose	(B)	Chitin
	(C)	Glycogen	(D)	Fructose
145.				hydrophilic head and a hydrophobic one of the three fatty acid chains:
	(A)	Wax	(B)	Terpenoid
	(C)	Steroid	(D)	Phospholipid
146.	Trig	lycerides that are solid at roon	n tem	perature:
	(A)	Fats	(B)	Oils
	(C)	Linoleic acid	(D)	None of these
147.	Trig	lycerides that are liquid at roo	m tei	mperature:
	(A)	Fats	(B)	Oils
	(C)	Stearin	(D)	All of these

148.	A ch	nemical group composed of a co	entral	phosphorous bonded to four oxygens:
	(A)	Carbonyl group	(B)	Sulfhydryl group
	(C)	Carboxylic	(D)	Phosphate group
149.	Nuc	leic acids are polymers compo	sed o	f monomer units known as:
	(A)	Amino acids	(B)	Nucleosides
	(C)	Nucleotides	(D)	Nitrogenous bases
150.	The	re are ——— nitrogenous	s base	es.
	(A)	Four	(B)	Five
	(C)	Six	(D)	Three
151.			form	ation from DNA to be used in making
	a pr	otein is:		
	(A)	mRNA	(B)	rRNA
	(C)	tRNA	(D)	All of these
152.	RNA	A occurs in:		
	(A)	Nucleus	(B)	Cytoplasm
	(C)	Both (A) and (B)	(D)	Nucleoplam
153.	The	monomer that makes up poly	sacch	arides is:
	(A)	Amino acids	(B)	Glucose
	(C)	Fatty acids	(D)	Glycerol
154.	Whi	ch of these is not a function of	lipid	s?
	(A)	Long term energy storage	(B)	Structures in cells
	(C)	Sex hormones	(D)	Enzymes
155.	All l	iving things use the same ——		— amino acids.
	(A)	4	(B)	20
	(C)	100	(D)	64
156.	Whi	ch of these is not a nucleotide	base	found in DNA?
	(A)	Uracil	(B)	Adenine
	(C)	Guanine	(D)	Thymine
157.			ribos	e sugar, and phosphate group, PO ₄₋₂)
	plus	two other phosphate groups.		
	(A)	Cytosine base	(B)	Guanine base
	(C)	Thymine base	(D)	Adenine base

158.	Men	nbrane carbohydrates when li	nked	to lipids are called:
	(A)	Sphingolipids	(B)	Glycolipids
	(C)	Phospholipids	(D)	Sterols
159.	Lact	tose is present in:		
	(A)	Sugarcane	(B)	Fruits
	(C)	Milk	(D)	Egg
160.	A di	saccharide that gives two mole	ecules	of glucose on hydrolysis is:
	(A)	Sucrose	(B)	Lactose
	(C)	Maltose	(D)	None of these
161.	In su	ugar cane and sugar beet, the s	storag	ge product is:
	(A)	Maltose	(B)	Sucrose
	(C)	Lactose	(D)	Isomaltose
162.	One	molecule of glucose and one n	nolecu	ule of galactose form:
	(A)	Maltose	(B)	Sucrose
	(C)	Lactose	(D)	Isomaltose
163.	Nuc	leic acids are related with:		
	(A)	Respiration	(B)	Photosynthesis
	(C)	Heredity	(D)	None of these
164.	Wax	tes form protective coating on:	:	
	(A)	Leaves	(B)	Fruits
	(C)	Animal's skin	(D)	All of these
165.	The	four murogenous bases which t	form t	the code words for DNA language are:
	(A)	ACTU	(B)	UTAC
	(C)	AGTU	(D)	AGCT
166.	DNA	A and RNA differ in:		
	(A)	Sugar only	(B)	Sugar and purines
	(C)	Sugar and pyrimindines	(D)	Sugar and phosphate
167.	A bo	ond formed between carboxyli	c acid	and alcohol is:
	(A)	Ester bond	(B)	Amide bond
	(C)	Phosphate bond	(D)	Ionic bond

168.	Whe	1 11 1	e cha	in are arranged in spiral manner, it is
	(A)	Primary structure	(B)	Secondary structure
	(C)	Tertiary structure	(D)	Quaternary structure
169.		step of protein synthesis in nent of DNA is copied into RNA		h the information contained specific alled:
	(A)	Transduction	(B)	Translation
	(C)	Transformation	(D)	Transcription
170.	Cho	ose the pair of terms that co	-	etes this sentence: nucleotides are to ns.
	(A)	Amino acid Polypeptides	(B)	Genes Enzymes
	(C)	Nucleic acids Amino acids	(D)	Polymers Peptides
171.	Whi	ch of these terms includes all o	thers	s in the list?
	(A)	Nucleic acid	(B)	Purine
	(C)	Nucleotide	(D)	Nitrogenous base
172.	The	compounds made up of simple	repe	eating isoprenoid units are called:
	(A)	Neutral lipids	(B)	Terpenoids
	(C)	Waxes	(D)	All of these
173.	The	term Protein was coined by:		
	(A)	Berzelius	(B)	G.J. Murlder
	(C)	Bloor	(D)	T.H. Morgan
174.	Wat	er molecule has characteristics	of:	
	(A)	Acid	(B)	Base
	(C)	Boun acid and base	(D)	None of these
175.		amount of heat must be abs age its temperature by 1°C:	orbe	d or lost by 1g of that substance to
	(A)	Specific heat	(B)	Heat of vaporization
	(C)	Both (A) and (B)	(D)	None of these
176.	Dur	ing the conversion of ATP into	ADF	, energy release is.
	(A)	31.81 KJ / mole	(B)	7.3 K.Cal / mole
	(C)	61.8 KJ / mole	(D)	Both (A) and (B)

177.	Mol	ecular formula of Stearin fat	is:	
	(A)	$C_{57}H_{110}O_{6}$	(B)	$C_{57}H_{98}O_6$
	(C)	$C_{57}H_{104}O_8$	(D)	$C_{57}H_{104}O_6$
178.		carbohydrate molecule whic rolysis are:	h yield	2 to 10 monosaccharide molecules on
	(A)	Polysaccharides	(B)	Oligosaccharides
	(C)	Monosaccharides	(D)	Heterosaccharides
179.		estimated that a person of valent to:	averag	ge size contains 16 kg of fat which is
	(A)	244000 K.Cal of energy	(B)	164000 K.Cal of energy
	(C)	144000 K.Cal of energy	(D)	188000 K.Cal of energy
180.	The	four interconnected rings of	steroid	l molecule have:
	(A)	12 carbons	(B)	15 carbons
	(C)	16 carbons	(D)	17 carbons
181.	ATF	is an example of:		
	(A)	Mononucleotide	(R)	Dinucleotide
	(C)	Polynucleotide	(D)	None of these
182.		process of making a polyp NA molecule associated with		e sequence from the <u>genetic code</u> of some is termed as:
	(A)	Transduction	(B)	Translation
	(C)	Transformatior	(D)	Transcription
183.	NAI) is an example of:		
	(A)	Mononucleotide	(B)	Dinucleotide
	(C)	Coenzyme	(D)	Both (B) and (C)

Answers

35

Sr.	Ans.								
1.	(D)	2.	(A)	3.	(D)	4.	(B)	5.	(B)
6.	(A)	7.	(C)	8.	(A)	9.	(A)	10.	(D)
11.	(A)	12.	(A)	13.	(B)	14.	(A)	15.	(D)
16.	(C)	17.	(B)	18.	(D)	19.	(C)	20.) (A)
21.	(A)	22.	(A)	23.	(B)	24.	(D)	25.	(A)
26.	(C)	27.	(A)	28.	(C)	29.	(D)	30.	(D)
31.	(C)	32.	(C)	33.	(A)	34.	(D)	35.	(D)
36.	(B)	37.	(C)	38.	(D)	39.	(C)	40.	(D)
41.	(A)	42.	(A)	43.	(C)	44.	(B)	45.	(D)
46.	(B)	47.	(A)	48.	(C)	49.	(C)	50.	(C)
51.	(C)	52.	(C)	53.	(A)	54.	(A)	55.	(D)
56.	(C)	57.	(A)	58.	(A)	59.	(B)	60.	(D)
61.	(A)	62.	(A)	63.	(A)	64.	(D)	65.	(C)
66.	(D)	67.	(D)	68.	(B)	69.	(D)	70.	(A)
71.	(C)	72.	(C)	73.	(B)	74.	(B)	75.	(C)
76.	(C)	77.	(A)	78.	(B)	79.	(C)	80.	(A)
81.	(B)	82.	(C)	83.	(B)	84.	(C)	85.	(C)
86.	(C)	87.	(A)	88.	(C)	89.	(A)	90.	(A)
91.	(B)	92.	(D)	93.	(C)	94.	(B)	95.	(B)
96.	(D)	97.	(A)	98.	(B)	99.	(C)	100.	(A)
101.	(C)	102.	(B)	103.	(A)	104.	(B)	105.	(D)
106.	(D)	107.	(D)	108.	(C)	109.	(A)	110.	(A)
111.	(B)	112.	(D)	113.	(A)	114.	(B)	115.	(D)
116.	(D)	117.	(A)	118.	(C)	119.	(B)	120.	(A)

Sr.	Ans.								
121.	(B)	122.	(C)	123.	(C)	124.	(D)	125.	(D)
126.	(C)	127.	(B)	128.	(D)	129.	(A)	130.	(A)
131.	(C)	132.	(A)	133.	(B)	134.	(A)	135.	(B)
136.	(B)	137.	(C)	138.	(D)	139.	(B)	140.	(D)
141.	(C)	142.	(B)	143.	(C)	144.	(C)	145.	(D)
146.	(A)	147.	(B)	148.	(D)	149.	(C)	150.	(B)
151.	(A)	152.	(C)	153.	(B)	154.	(D)	155.	(B)
156.	(A)	157.	(D)	158.	(B)	159.	(C)	160.	(C)
161.	(B)	162.	(C)	163.	(C)	164.	(D)	165.	(D)
166.	(C)	167.	(A)	168.	(B)	169.	(D)	170.	(C)
171.	(A)	172.	(B)	173.	(A)	174.	(C)	175.	(A)
176.	(D)	177.	(A)	178.	(B)	179.	(C)	180.	(D)
181.	(A)	182.	(B)	183.	(D)			`	