Exercise 2.10 (Solutions)

Calculus and Analytic Geometry, MATHEMATICS 12

Question #1

Find two positive integers whose sum is 30 and their product will be maximum.

Solution

Let x and 30-x be two positive integers and P denotes product integers then

$$P = x(30-x)$$
$$= 30x - x^2$$

Diff. w.r.t. x

$$\frac{dP}{dx} = 30 - 2x \dots (i)$$

Again diff. w.r.t x

$$\frac{d^2P}{dx^2} = -2$$
 (ii)

For critical points, put $\frac{dP}{dx} = 0$

$$\Rightarrow 30-2x=0$$

$$\Rightarrow -2x = -30 \Rightarrow x = 15$$

Putting value of x in (ii)

$$\left. \frac{d^2 P}{dx^2} \right|_{x=2} = -2 < 0$$

 \Rightarrow P is maximum at x=15

Other + tive integer = 30-x

$$= 30-15 = 15$$

Hence 15 and 15 are the required positive numbers.

Question # 2

Divide 20 into two parts so that the sum of their squares will be minimum.

Solution

Let x be the part of 20 then other is 20-x.

Let S denotes sum of squares then

$$S = x^{2} + (20 - x)^{2}$$
$$= x^{2} + 400 - 40x + x^{2}$$
$$= 2x^{2} - 40x + 400$$

Diff. w.r.t x

$$\frac{dS}{dx} = 4x - 40$$
 (i)

Again diff. w.r.t x

$$\frac{d^2S}{dx^2} = 4$$
 (ii)

For stationary points put $\frac{dS}{dx} = 0$

$$\Rightarrow 4x - 40 = 0 \Rightarrow 4x = 40$$

$$\Rightarrow x = 10$$

Putting value of x in (ii)

$$\left. \frac{d^2S}{dx^2} \right|_{x=10} = 4 > 0$$

 \Rightarrow S is minimum at x = 10

Other integer = 20-x = 20-10 = 10

Hence 10, 10 are the two parts of 20.

Question #3

Find two positive integers whose sum is 12 and the product of one with the square of the other will be maximum.

Solution

Let x and 12-x be two + tive integers and P denotes product of one with square of the other then

$$P = x(12-x)^{2}$$

$$\Rightarrow P = x(144-24x+x^{2})$$

$$= x^{3}-24x^{2}+144x$$

Diff. w.r.t x

$$\frac{dP}{dx} = 3x^2 - 48x + 144 \dots (i)$$

Again diff. w.r.t x

$$\frac{d^2P}{dx^2} = 6x - 48 \dots (ii)$$

For critical points put $\frac{dP}{dx} = 0$

$$3x^2 - 48x + 144 = 0$$

$$\Rightarrow x^2 - 16x + 48 = 0$$

$$\Rightarrow x^2 - 4x - 12x + 48 = 0$$

$$\Rightarrow x(x-4)-12(x-4)=0$$

$$\Rightarrow (x-4)(x-12) = 0$$

$$\Rightarrow x = 4 \text{ or } x = 12$$

We can not take x=12 as sum of integers is 12. So put x=4 in (ii)

$$\frac{d^2P}{dx^2}\Big|_{x=4} = 6(4) - 48$$
$$= 24 - 48 = -24 < 0$$

 \Rightarrow P is maximum at x = 4.

So the other integer = 12-4 = 8Hence 4, 8 are the required integers.

Alternative Method: (by Irfan Mehmood: Fazaia Degree College Risalpur)

Let x and 12-x be two positive integers and P denotes product of one with square of the other then

$$P = x^2 (12 - x)$$

$$\Rightarrow P = 12x^2 - x^3$$

Diff. w.r.t x

$$\frac{dP}{dx} = 24x - 3x^2$$
 (i)

Again diff. w.r.t x

$$\frac{d^2P}{dx^2} = 24-6x$$
 (ii)

For critical points put $\frac{dP}{dx} = 0$

$$24x-3x^{2} = 0$$

$$\Rightarrow 3x(x-8) = 0$$

$$\Rightarrow x = 0 \text{ or } x = 8$$

We cannot take x=0 as given integers are positive. So put x=8 in (ii)

$$\frac{d^2P}{dx^2}\Big|_{x=8} = 24 - 6(8)$$
$$= 24 - 48 = -24 < 0$$

 \Rightarrow P is maximum at x = 8.

So the other integer = 12-8 = 4

Hence 4, 8 are the required integers.

Question #4

The perimeter of a triangle is 16cm. If one side is of length 6cm, What are length of the other sides for maximum area of the triangle.

Solution

Let the remaining sides of the triangles are x and y

Perimeter = 16

$$\Rightarrow$$
 6+x+y = 16

$$\Rightarrow x + y = 16 - 6 \Rightarrow x + y = 10$$
$$\Rightarrow y = 10 - x \dots (i)$$

Now suppose *A* denotes the square of the area of triangle then

$$A = s(s-a)(s-b)(s-c)$$

Where
$$s = \frac{a+b+c}{2} = \frac{6+x+y}{2}$$

= $\frac{6+x+10-x}{2}$ from (i)

$$=\frac{16}{2} = 8$$

So
$$A = 8(8-6)(8-x)(8-y)$$

= $8(2)(8-x)(8-10+x)$

$$= 16(8-x)(-2+x)$$

$$= 16(-16+2x+8x-x^{2})$$

$$\Rightarrow A = 16(-16+10x-x^{2})$$

Diff. w.r.t x

$$\frac{dA}{dx} = 16(10-2x)$$
(i)

Again diff. w.r.t x

$$\frac{d^2A}{dx^2} = 16(-2) = -32$$

For critical points put $\frac{dA}{dx} = 0$

$$16(10-2x) = 0$$

$$\Rightarrow (10-2x) = 0 \Rightarrow -2x = -10$$

$$\Rightarrow x = 5$$

Putting value of x in (ii)

$$\left. \frac{d^2 A}{dx^2} \right|_{x=0} = -32 < 0$$

 \Rightarrow A is maximum at x = 5

Putting value of x in (i)

$$y = 10-5 = 5$$

Hence length of remaining sides of triangles are 5cm and 5cm.

Question #5

Find the dimensions of a rectangle of largest area having perimeter 120*cm*.

Solution

then

Let *x* and *y* be the length and breadth of rectangle,

Area =
$$A = xy$$
 (i)



Perimeter = 120

$$\Rightarrow x + x + y + y = 120$$

$$\Rightarrow 2x + 2y = 120$$

$$\Rightarrow x + y = 60$$

$$\Rightarrow y = 60-x \dots (ii)$$

Putting in (i)

$$A = x(60-x)$$

$$\Rightarrow A = 60x - x^2$$

Diff. w.r.t x

$$\frac{dA}{dx} = 60 - 2x \dots (iii)$$

Again diff. w.r.t x

$$\frac{d^2A}{dx^2} = -2 \dots (iv)$$

For critical points put $\frac{dA}{dx} = 0$

$$60-2x = 0 \Rightarrow -2x = -60$$
$$\Rightarrow x = 30$$

Putting value of x in (iv)

$$\left. \frac{d^2 A}{dx^2} \right|_{x=30} = -2 < 0$$

 \Rightarrow A is maximum at x = 30

Putting value of x in (ii)

$$y = 60 - 30 = 30$$

Hence dimension of rectangle is 30*cm*, 30*cm*.

Question #6

Find the lengths of the sides of a variable rectangle having area $36cm^2$ when its perimeter is minimum.



Solution

Let *x* and *y* be the length and breadth of the rectangle then

$$Area = xy$$

$$\Rightarrow$$
 36 = xy

$$\Rightarrow y = \frac{36}{x} \dots (i)$$

Now perimeter = 2x + 2y

$$\Rightarrow P = 2x + 2\left(\frac{36}{x}\right)$$
$$= 2\left(x + 36x^{-1}\right)$$

Diff. P w.r.t x

$$\frac{dP}{dx} = 2(1-36x^{-2})$$
 ... (ii)

Again diff. w.r.t x

$$\frac{d^2P}{dx^2} = 2(0-36(-2x^{-3}))$$
$$= 2(72x^{-3}) = \frac{144}{x^3}$$

For critical points put $\frac{dP}{dx} = 0$

$$2(1-36x^{-2})=0 \Rightarrow 1-\frac{36}{x^2}=0$$

$$\Rightarrow 1 = \frac{36}{x^2} \Rightarrow x^2 = 36 \Rightarrow x = \pm 6$$

Since length can not be negative therefore

$$x = 6$$

Putting value of x in (ii)

$$\left. \frac{d^2 P}{dx^2} \right|_{x=6} = \frac{144}{\left(6\right)^3} > 0$$

Hence P is minimum at x = 6.

Putting in eq. (i)

$$y = \frac{36}{6} = 6$$

Hence 6*cm* and 6*cm* are the lengths of the sides of the rectangle.

Question #7

A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of the box which will require the least material.

Solution

Let *x* be the lengths of the sides of the base and *y* be the height of the box.

Then Volume

$$= x \cdot x \cdot y$$

$$\Rightarrow 4 = x^2 y$$

$$\Rightarrow y = \frac{4}{r^2} \dots (i)$$

Suppose *S* denotes the surface area of the box, then

X

$$S = x^2 + 4xy$$

$$\Rightarrow S = x^2 + 4x \left(\frac{4}{x^2}\right)$$

$$\Rightarrow S = x^2 + 16x^{-1}$$

Diff. S w.r.t x

$$\frac{dS}{dx} = 2x - 16x^{-2}...$$
 (ii)

Again diff. w.r.t x

$$\frac{d^2S}{dx^2} = 2 - 16(-2x^{-3})$$
$$= 2 + \frac{32}{x^3} \dots \text{(iii)}$$

For critical points, put $\frac{dS}{dx} = 0$

$$2x - 16x^{-2} = 0 \implies 2x - \frac{16}{x^2} = 0$$

$$\Rightarrow \frac{2x^3 - 16}{x^2} = 0$$

$$\Rightarrow 2x^3 - 16 = 0 \implies 2x^3 = 16$$

$$\Rightarrow x^3 = 8 \implies x = 2$$

Putting in (ii)

$$\left. \frac{d^2S}{dx^2} \right|_{x=2} = 2 + \frac{32}{(2)^3} > 0$$

 \Rightarrow S is min. when x = 2

Putting value of x in (i)

$$y = \frac{4}{(2)^2} = 1$$

Hence 2dm, 2dm and 1dm are the dimensions of the box.

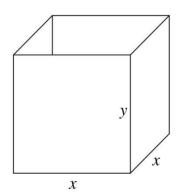
Question #8

Find the dimensions of a rectangular garden having perimeter 80 meters if its area is to be maximum.

Solution

Do yourself as question # 5.

Question # 9



An open tank of square base of side x and vertical sides is to be constructed to contain a given quantity of water. Find the depth in terms of x if the expense of

lining the inside of the tank with lead will be least.

Solution

Let *y* be the height of the open tank.

Then Volume =
$$x \cdot x \cdot y$$

 $\Rightarrow V = x^2 y$
 $\Rightarrow y = \frac{V}{r^2}$ (i)

If *S* denotes the surface area the open tank, then

$$S = x^2 + 4xy$$
$$= x^2 + 4x\left(\frac{V}{x^2}\right)$$

$$\Rightarrow S = x^2 + 4Vx^{-1}$$

Diff. w.r.t x

$$\frac{dS}{dx} = 2x - 4Vx^{-2} \dots (ii)$$

Again diff. w.r.t x

$$\frac{d^2S}{dx^2} = 2 - 4V(-2x^{-3})$$

$$= 2 + \frac{8V}{x^3} \dots (iii)$$

For critical points, put $\frac{dS}{dx} = 0$

$$2x - 4Vx^{-2} = 0 \implies 2x - \frac{4V}{x^2} = 0$$

$$\Rightarrow \frac{2x^3 - 4V}{x^2} = 0 \implies 2x^3 - 4V = 0$$

$$\Rightarrow 2x^3 = 4V \implies x^3 = 2V$$

$$\Rightarrow x = (2V)^{\frac{1}{3}}$$

Putting in (ii)

$$\frac{d^2S}{dx^2}\Big|_{x=(2V)^{\frac{1}{3}}} = 2 + \frac{8V}{\left((2V)^{\frac{1}{3}}\right)^3}$$
$$= 2 + \frac{8V}{2V} = 2 + 4 = 6 > 0$$

 \Rightarrow S is minimum when $x = (2V)^{\frac{1}{3}}$

i.e.
$$x^3 = 2V \implies V = \frac{x^3}{2}$$

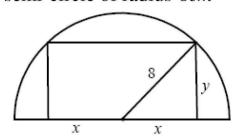
Putting in (i)

$$y = \frac{x^3/2}{x^2} = \frac{x}{2}$$

Hence height of the open tank is $\frac{x}{2}$.

Question # 10

Find the dimensions of the rectangular of maximum area which fits inside the semi-circle of radius 8*cm*



Solution

Let 2x & y be dimension of rectangle.

Then from figure, using Pythagoras theorem

$$x^{2} + y^{2} = 8^{2}$$

 $\Rightarrow y^{2} = 64 - x^{2}$ (i)

Now Area of the rectangle is given by $A = 2x \cdot y$

Squaring both sides

$$A^{2} = 4x^{2}y^{2}$$

$$= 4x^{2}(64 - x^{2})$$

$$= 256x^{2} - 4x^{4}$$

Now suppose

$$f = A^2 = 256x^2 - 4x^4$$
 (ii)

Diff. w.r.t x

$$\frac{df}{dx} = 512x - 16x^3 \dots (iii)$$

Again diff. w.r.t x

$$\frac{d^2f}{dx^2} = 512 - 48x^2 \dots (iv)$$

For critical points, put $\frac{df}{dx} = 0$

$$\Rightarrow 512x - 16x^3 = 0$$

$$\Rightarrow 16x(32-x^2) = 0$$

$$\Rightarrow 16x = 0 \quad \text{or} \quad 32 - x^2 = 0$$

$$\Rightarrow x = 0$$
 or $x^2 = 32$

$$\Rightarrow x = \pm 4\sqrt{2}$$

Since x can not be zero or -ive, therefore

$$x = 4\sqrt{2}$$

Putting in (iv)

$$\frac{d^2 f}{dx^2} \Big|_{x=4\sqrt{2}} = 512 - 48(4\sqrt{2})^2$$
$$= 512 - 48(32) = 512 - 1536$$
$$= -1024 < 0$$

 \Rightarrow Area is max. for $x = 4\sqrt{2}$

Hence length = $2x = 2(4\sqrt{2})$

Breadth =
$$y = \sqrt{64 - (4\sqrt{2})^2}$$

= $\sqrt{64 - 32} = \sqrt{32} = 4\sqrt{2}$

Hence dimension is $8\sqrt{2}$ cm and $4\sqrt{2}$ cm.

Question #11

Find the point on the curve $y = x^2 - 1$ that is closest to the point (3,-1)

Solution

Let P(x, y) be point and let A(3,-1).

Then
$$d = |AP| = \sqrt{(x-3)^2 + (y+1)^2}$$

 $\Rightarrow d^2 = (x-3)^2 + (y+1)^2$
 $= (x-3)^2 + (x^2-1+1)^2$

$$y = x^2 - 1$$
 (given)

$$\Rightarrow d^2 = (x-3)^2 + x^4$$

Let
$$f = d^2 = (x-3)^2 + x^4$$
.

Diff. w.r.t x

$$\frac{df}{dx} = 2(x-3) + 4x^3$$
(i)

Again diff. w.r.t x

$$\frac{d^2f}{dx^2} = 2 + 12x^2 \dots (ii)$$

For stationary points, put $\frac{df}{dx} = 0$ $2(x-3)+4x^3 = 0$ FSc-II / Ex- 2.10 - 6

$$\Rightarrow 2x-6+4x^3=0$$

$$\Rightarrow$$
 $4x^3 + 2x - 6 = 0$

$$\Rightarrow 2x^3 + x - 3 = 0$$
 $\div \text{ing by } 2$

By synthetic division

$$\Rightarrow x = 1 \quad \text{or} \quad 2x^2 + 2x + 3 = 0$$

$$\Rightarrow x = \frac{-2 \pm \sqrt{4 - 4(2)(3)}}{4}$$

$$=\frac{-2\pm\sqrt{-20}}{4}$$

This is complex and not acceptable. Now put x = 1 in (ii)

$$\left. \frac{d^2 f}{dx^2} \right|_{x=1} = 2 + 12(1)^2 = 14 > 0$$

 \Rightarrow d is minimum at x = 1.

Also
$$y = 1^2 - 1 = 0$$
.

Hence (1,0) is the required point.

Question #12

Find the point on the curve $y = x^2 + 1$ that is closest to the point (18,1)

Solution

Do yourself as Q # 11