# **Exercise 2.9 (Solutions)**

## Calculus and Analytic Geometry, MATHEMATICS 12

#### **Increasing and Decreasing Function (Page 104)**

Let f be defined on an interval (a,b) and let  $x_1, x_2 \in (a,b)$ . Then

- 1. f is increasing on the interval (a,b) if  $f(x_2) > f(x_1)$  whenever  $x_2 > x_1$
- 2. f is decreasing on the interval (a,b) if  $f(x_2) < f(x_1)$  whenever  $x_2 > x_1$

# Theorem (Page 105)

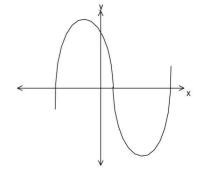
Let f be differentiable on the open interval (a,b).

- 1- f is increasing on (a,b) if f'(x) > 0 for each  $x \in (a,b)$ .
- 2- f is decreasing on (a,b) if f'(x) < 0 for each  $x \in (a,b)$ .

## First Derivative Test (Page 109)

Let f be differentiable in neighbourhood of c, where f'(c) = 0.

- 1. The function has relative maxima at x = c if f'(x) > 0 before x = c and f'(x) < 0 after x = c.
- 2. The function has relative minima at x = c if f'(x) < 0 before x = c and f'(x) > 0 after x = c.



# **Second Derivative Test (Page 111)**

Let f be differential function in a neighbourhood of c, where f'(c) = 0. Then

- 1- f has relative maxima at c if f''(c) < 0.
- 2- f has relative minima at c if f''(c) > 0.

#### Question #1

Determine the intervals in which f is increasing or decreasing for the domain mentioned in each case.

(i) 
$$f(x) = \sin x$$
;  $x \in [-\pi, \pi]$ 

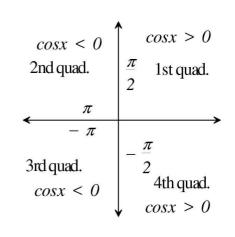
(ii) 
$$f(x) = \cos x$$
 ;  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

(iii) 
$$f(x) = 4 - x^2$$
;  $x \in [-2, 2]$ 

(iv) 
$$f(x) = x^2 + 3x + 2$$
;  $x \in [-4,1]$ 

## Solution

(i) 
$$f(x) = \sin x$$
 ;  $x \in [-\pi, \pi]$   
 $\Rightarrow f'(x) = \cos x$   
Put  $f'(x) = 0 \Rightarrow \cos x = 0$   
 $\Rightarrow x = -\frac{\pi}{2}, \frac{\pi}{2}$ 



So we have sub-intervals 
$$\left(-\pi, -\frac{\pi}{2}\right)$$
,  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ,  $\left(\frac{\pi}{2}, \pi\right)$   
 $f'(x) = \cos x < 0$  whenever  $x \in \left(-\pi, -\frac{\pi}{2}\right)$ 

So 
$$f$$
 is decreasing on the interval  $\left(-\pi, -\frac{\pi}{2}\right)$ .

$$f'(x) = \cos x > 0$$
 whenever  $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

So 
$$f$$
 is increasing on the interval  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ .

$$f'(x) = \cos x > 0$$
 whenever  $x \in \left(\frac{\pi}{2}, \pi\right)$ 

So 
$$f$$
 is decreasing on the interval  $\left(\frac{\pi}{2}, \pi\right)$ .

(ii) 
$$f(x) = \cos x$$
 ;  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

$$\Rightarrow f'(x) = -\sin x$$

Put 
$$f'(x) = 0 \implies -\sin x = 0 \implies \sin x = 0 \implies x = 0$$

So we have sub-intervals 
$$\left(-\frac{\pi}{2},0\right)$$
 and  $\left(0,\frac{\pi}{2}\right)$ .

Now 
$$f'(x) = -\sin x > 0$$
 whenever  $x \in \left(-\frac{\pi}{2}, 0\right)$ 

So 
$$f$$
 is increasing on  $\left(-\frac{\pi}{2},0\right)$ 

$$f'(x) = -\sin x < 0$$
 whenever  $x \in \left(0, \frac{\pi}{2}\right)$ 

So 
$$f$$
 is decreasing on  $\left(0, \frac{\pi}{2}\right)$ .

(iii) 
$$f(x) = 4 - x^2$$
 ;  $x \in [-2, 2]$   
 $\Rightarrow f'(x) = -2x$ 

Put 
$$f'(x) = 0 \implies -2x = 0 \implies x = 0$$

So we have subintervals (-2,0) and (0,2)

$$f'(x) = -2x > 0$$
 whenever  $x \in (-2,0)$ 

$$\therefore$$
 f is increasing on the interval  $(-2,0)$ 

Also 
$$f'(x) = -2x < 0$$
 whenever  $x \in (0,2)$ 

$$\therefore$$
 f is decreasing on  $(0,2)$ 

(iv) 
$$f(x) = x^2 + 3x + 2$$
 ;  $x \in [-4,1]$   
 $\Rightarrow f'(x) = 2x + 3$ 

Put 
$$f'(x) = 0 \implies 2x + 3 = 0 \implies x = -\frac{3}{2}$$

So we have sub-intervals  $\left(-4, -\frac{3}{2}\right)$  and  $\left(-\frac{3}{2}, 1\right)$ 

Now f'(x) = 2x + 3 < 0 whenever  $x \in \left(-4, -\frac{3}{2}\right)$ 

So f is decreasing on  $\left(-4, -\frac{3}{2}\right)$ 

Also f'(x) > 0 whenever  $x \in \left(-\frac{3}{2}, 1\right)$ 

Therefore f is increasing on  $\left(-\frac{3}{2},1\right)$ .

#### **Question #2**

Ind the extreme values of the following functions defined as:

(i) 
$$f(x) = 1 - x^3$$

(ii) 
$$f(x) = x^2 - x - 2$$

(iii) 
$$f(x) = 5x^2 - 6x + 2$$

(iv) 
$$f(x) = 3x^2$$

(v) 
$$f(x) = 3x^2 - 4x + 5$$

(vi) 
$$f(x) = 2x^3 - 2x^2 - 36x + 3$$

(vii) 
$$f(x) = x^4 - 4x^2$$

(viii) 
$$f(x) = (x-2)^2(x-1)$$

(ix) 
$$f(x) = 5 + 3x - x^3$$

Solution

$$(i) f(x) = 1 - x^3$$

Diff. w.r.t x

$$f'(x) = -3x^2$$
 ......(i)

For stationary points, put f'(x) = 0

$$\Rightarrow -3x^2 = 0 \Rightarrow x = 0$$

Diff (i) w.r.t x

$$f''(x) = -6x$$
 .....(ii)

Now put x = 0 in (ii)

$$f''(0) = -6(0) = 0$$

So second derivative test fails to determinate the extreme points.

Put  $x = 0 - \varepsilon = -\varepsilon$  in (i)

$$f'(x) = -3(-\varepsilon)^2 = -3\varepsilon^2 < 0$$

Put  $x = 0 + \varepsilon = \varepsilon$  in (i)

$$f'(x) = -3(\varepsilon)^2 = -3\varepsilon^2 < 0$$

As f'(x) does not change its sign before and after x = 0.

Since at x = 0, f(x) = 1 therefore (0,1) is the point of inflexion.

(ii) 
$$f(x) = x^2 - x - 2$$
  
Diff. w.r.t.  $x$   
 $f'(x) = 2x - 1$  ......(i)

For stationary points, put f'(x) = 0

$$\Rightarrow 2x-1=0 \Rightarrow 2x=1 \Rightarrow x=\frac{1}{2}$$

Diff (i) w.r.t x

$$f''(x) = \frac{d}{dx}(2x-1) = 2$$

As 
$$f''(\frac{1}{2}) = 2 > 0$$

Thus f(x) is minimum at  $x = \frac{1}{2}$ 

Now 
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} - 2 = \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$$

(iii) 
$$f(x) = 5x^2 - 6x + 2$$

Diff. w.r.t. x

$$f'(x) = 10x - 6$$
 .....(i)

For stationary points, put f'(x) = 0

$$\Rightarrow 10x - 6 = 0 \Rightarrow 10x = 6 \Rightarrow x = \frac{6}{10} \Rightarrow x = \frac{3}{5}$$

Diff (i) w.r.t x

$$f''(x) = \frac{d}{dx}(10x-6) = 10$$

As 
$$f''\left(\frac{3}{5}\right) = 10 > 0$$

Thus f(x) is minimum at  $x = \frac{3}{5}$ 

And 
$$f\left(\frac{3}{5}\right) = 5\left(\frac{3}{5}\right)^2 - 6\left(\frac{3}{5}\right) + 2 = \frac{9}{5} - \frac{18}{5} + 2 = \frac{1}{5}$$

(iv) 
$$f(x) = 3x^2$$

Diff. w.r.t x

$$f'(x) = 6x \dots (i)$$

For stationary points, put f'(x) = 0

$$\Rightarrow 6x = 0 \Rightarrow x = 0$$

Diff. (i) w.r.t x

$$f''(x) = 6$$

At 
$$x=0$$
  
 $f''(0) = 6 > 0$   
 $\Rightarrow f$  has minimum value at  $x=0$   
And  $f(0) = 3(0)^2 = 0$ 

(v) Do yourself

(vi) 
$$f(x) = 2x^3 - 2x^2 - 36x + 3$$
  
Diff. w.r.t  $x$   
 $f'(x) = \frac{d}{dx} (2x^3 - 2x^2 - 36x + 3) = 6x^2 - 4x - 36$  .....(i)

For stationary points, put f'(x) = 0

$$\Rightarrow 6x^{2} - 4x - 36 = 0$$

$$\Rightarrow 3x^{2} - 2x - 12 = 0 \quad \div \text{ing by 2}$$

$$\Rightarrow x = \frac{2 \pm \sqrt{4 - 4(3)(-18)}}{2(3)}$$

$$= \frac{2 \pm \sqrt{4 + 216}}{6} = \frac{2 \pm \sqrt{220}}{6} = \frac{2 \pm 2\sqrt{55}}{6} = \frac{1 \pm \sqrt{55}}{3}$$

Diff. (i) w.r.t x

$$f''(x) = \frac{d}{dx} (6x^2 - 4x - 36) = 12x - 4$$
Now 
$$f''\left(\frac{1 + \sqrt{55}}{3}\right) = 12\left(\frac{1 + \sqrt{55}}{3}\right) - 4$$

$$= 4\left(1 + \sqrt{55}\right) - 4 = 4 + 4\sqrt{55} - 4 = 4\sqrt{55} > 0$$

 $\Rightarrow f(x)$  has relative minima at  $x = \frac{1+\sqrt{55}}{3}$ .

And 
$$f\left(\frac{1+\sqrt{55}}{3}\right) = 2\left(\frac{1+\sqrt{55}}{3}\right)^3 - 2\left(\frac{1+\sqrt{55}}{3}\right)^2 - 36\left(\frac{1+\sqrt{55}}{3}\right) + 3$$
  
 $= \frac{2}{27}\left(1+\sqrt{55}\right)^3 - \frac{2}{9}\left(1+\sqrt{55}\right)^2 - 12\left(1+\sqrt{55}\right) + 3$   
 $= \frac{2}{27}\left(1+3\sqrt{55}+3\cdot55+55\sqrt{55}\right) - \frac{2}{9}\left(1+2\sqrt{55}+55\right) - 12\left(1+\sqrt{55}\right) + 3$   
 $= \frac{2}{27}\left(166+58\sqrt{55}\right) - \frac{2}{9}\left(56+2\sqrt{55}\right) - 12\left(1+\sqrt{55}\right) + 3$   
 $= \frac{332}{27} + \frac{116}{27}\sqrt{55} - \frac{112}{9} - \frac{4}{9}\sqrt{55} - 12 - 12\sqrt{55} + 3$   
 $= -\frac{247}{27} - \frac{220}{27}\sqrt{55} = -\frac{1}{27}\left(247+220\sqrt{55}\right)$ 

FSc-II / Ex- 2.9 - 6

Also 
$$f''\left(\frac{1-\sqrt{55}}{3}\right) = 12\left(\frac{1-\sqrt{55}}{3}\right) - 4$$
  
=  $4\left(1-\sqrt{55}\right) - 4 = 4-4\sqrt{55} - 4 = -4\sqrt{55} < 0$ 

 $\Rightarrow f(x)$  has relative maxima at  $x = \frac{1+\sqrt{55}}{3}$ .

And Since 
$$f\left(\frac{1+\sqrt{55}}{3}\right) = -\frac{1}{27}(247+220\sqrt{55})$$

Therefore by replacing  $\sqrt{55}$  by  $-\sqrt{55}$ , we have

$$f\left(\frac{1-\sqrt{55}}{3}\right) = -\frac{1}{27}\left(247 - 220\sqrt{55}\right)$$

$$(vii) f(x) = x^4 - 4x^2$$

Diff. w.r.t. x

$$f'(x) = 4x^3 - 8x \dots (i)$$

For critical points put f'(x) = 0

$$\Rightarrow 4x^3 - 8x = 0 \Rightarrow 4x(x^2 - 2) = 0$$

$$\Rightarrow$$
 4x = 0 or  $x^2 - 2 = 0$ 

$$\Rightarrow x = 0$$
 or  $x^2 = 2$   $\Rightarrow x = \pm \sqrt{2}$ 

Now diff. (i) w.r.t x

$$f''(x) = 12x^2 - 8$$

For  $x = -\sqrt{2}$ 

$$f''(-\sqrt{2}) = 12(-\sqrt{2})^2 - 8 = 24 - 8 = 16 > 0$$

 $\Rightarrow$  f has relative minima at  $x = -\sqrt{2}$ 

And 
$$f(-\sqrt{2}) = (-\sqrt{2})^4 - 4(-\sqrt{2})^2 = 4 - 8 = -4$$

For x = 0

$$f''(0) = 12(0) - 8 = -8 < 0$$

 $\Rightarrow$  f has relative maxima at x = 0

And 
$$f(0) = (0)^4 - 4(0)^2 = 0$$

For  $x = \sqrt{2}$ 

$$f''(\sqrt{2}) = 12(\sqrt{2})^2 - 8 = 24 - 8 = 16 > 0$$

 $\Rightarrow$  f has relative minima at  $x = \sqrt{2}$ 

And 
$$f(\sqrt{2}) = (\sqrt{2})^4 - 4(\sqrt{2})^2 = 4 - 8 = -4$$

(viii) 
$$f(x) = (x-2)^2(x-1)$$
  
=  $(x^2-4x+4)(x-1) = x^3-4x^2+4x-x^2+4x-4$   
=  $x^3-5x^2+8x-4$ 

Diff. w.r.t. x

$$f'(x) = 3x^2 - 10x + 8$$

For critical (stationary) points, put f'(x) = 0

$$\Rightarrow 3x^2 - 10x + 8 = 0 \Rightarrow 3x^2 - 6x - 4x + 8 = 0$$

$$\Rightarrow 3x(x-2) - 4(x-2) = 0 \Rightarrow (x-2)(3x-4) = 0$$

$$\Rightarrow (x-2) = 0 \text{ or } (3x-4) = 0$$

$$\Rightarrow x = 2 \text{ or } x = \frac{4}{3}$$

Now diff. (i) w.r.t x

$$f''(x) = 6x - 10$$

For x = 2

$$f''(2) = 6(2) - 10 = 2 > 0$$

 $\Rightarrow$  f has relative minima at x = 2

And 
$$f(2) = (2-2)^2(2-1) = 0$$

For 
$$x = \frac{4}{3}$$

$$f''\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right) - 10 = 8 - 10 = -2 < 0$$

 $\Rightarrow$  f has relative maxima at  $x = \frac{4}{3}$ 

And 
$$f\left(\frac{4}{3}\right) = \left(\frac{4}{3} - 2\right)^2 \left(\frac{4}{3} - 1\right) = \left(-\frac{2}{3}\right)^2 \left(\frac{1}{3}\right) = \left(\frac{4}{9}\right) \left(\frac{1}{3}\right) = \frac{4}{27}$$

(ix) 
$$f(x) = 5+3x-x^3$$
  
Diff. w.r.t  $x$ 

$$f'(x) = 3-3x^2 \dots (i)$$

For stationary points, put f'(x) = 0

$$\Rightarrow 3-3x^2=0 \Rightarrow 3x^2=3 \Rightarrow x^2=1 \Rightarrow x=\pm 1$$

Diff. (i) w.r.t x

$$f''(x) = -6x$$

For x = 1

$$f''(1) = -6(1) = -6 < 0$$

 $\Rightarrow$  f has relative maxima at x=1

And 
$$f(1) = 5 + 3(1) - (1)^3 = 5 + 3 - 1 = 7$$

For x = -1

FSc-II / Ex- 2.9 - 8

$$f''(-1) = -6(-1) = 6 > 0$$
  
 $\Rightarrow f$  has relative minima at  $x = -1$ , and  $f(-1) = 5 + 3(-1) - (-1)^3 = 5 - 3 + 1 = 3$ 

#### **Question #3**

Find the maximum and minimum values of the function defined by the following equation occurring in the interval  $[0,2\pi]$ 

$$f(x) = \sin x + \cos x$$

**Solution** 
$$f(x) = \sin x + \cos x$$
 where  $x \in [0, 2\pi]$ 

Diff. w.r.t x

$$f'(x) = \cos x - \sin x \dots (i)$$

For stationary points, put f'(x) = 0

$$\cos x - \sin x = 0$$

$$\Rightarrow -\sin x = -\cos x \quad \Rightarrow \frac{\sin x}{\cos x} = 1 \quad \Rightarrow \tan x = 1$$
$$\Rightarrow x = \tan^{-1}(1) \quad \Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4} \quad \text{when } x \in [0, 2\pi]$$

Now diff. (i) w.r.t x

$$f''(x) = -\sin x - \cos x$$

For 
$$x = \frac{\pi}{4}$$

$$f''\left(\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -2\left(\frac{1}{\sqrt{2}}\right) < 0$$

 $\Rightarrow$  f has relative maxima at  $x = \frac{\pi}{4}$ 

And 
$$f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2\left(\frac{1}{\sqrt{2}}\right) = \left(\sqrt{2}\right)^2 \left(\frac{1}{\sqrt{2}}\right) = \sqrt{2}$$

For 
$$x = \frac{5\pi}{4}$$

$$f''\left(\frac{5\pi}{4}\right) = -\sin\left(\frac{5\pi}{4}\right) - \cos\left(\frac{5\pi}{4}\right)$$
$$= -\left(-\frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2\left(\frac{1}{\sqrt{2}}\right) > 0$$

 $\Rightarrow$  f has relative minima at  $x = \frac{5\pi}{4}$ 

And 
$$f\left(\frac{5\pi}{4}\right) = \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -2\left(\frac{1}{\sqrt{2}}\right) = -\sqrt{2}$$

## Question # 4

Show that  $y = \frac{\ln x}{x}$  has maximum value at x = e

**Solution** 
$$y = \frac{\ln x}{x}$$

Diff. w.r.t x

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{\ln x}{x} \right) = \frac{x \cdot \frac{1}{x} - \ln x \cdot (1)}{x^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1 - \ln x}{x^2} \dots \dots \dots (i)$$

For critical points, put  $\frac{dy}{dx} = 0$ 

$$\Rightarrow \frac{1 - \ln x}{x^2} = 0 \Rightarrow 1 - \ln x = 0 \Rightarrow \ln x = 1$$

$$\Rightarrow \ln x = \ln e \Rightarrow x = e \qquad \because \ln e = 1$$

Diff. (i) w.r.t x

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1-\ln x}{x^2}\right)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{x^2 \cdot \left(-\frac{1}{x}\right) - (1-\ln x) \cdot (2x)}{(x^2)^2} = \frac{-x - 2x + 2x \ln x}{x^4} = \frac{-3x + 2x \ln x}{x^4}$$

At x = e

$$\frac{d^2 y}{dx^2}\Big|_{x=e} = \frac{-3e + 2e \cdot \ln e}{e^4}$$

$$= \frac{-3e + 2e \cdot (1)}{e^4} = \frac{-e}{e^4} = -\frac{1}{e^3} < 0$$

 $\Rightarrow$  y has a maximum value at x = e.

# **Question #5**

Show that  $y = x^x$  has maximum value at  $x = \frac{1}{e}$ .

**Solution** 
$$y = x^x$$

Taking log on both sides

$$\ln y = \ln x^x \implies \ln y = x \ln x$$

Diff. w.r.t x

$$\frac{d}{dx}(\ln y) = \frac{d}{dx}x\ln x$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = x \cdot \frac{d}{dx}\ln x + \ln x \cdot \frac{dx}{dx}$$

$$= x \cdot \frac{1}{x} + \ln x \cdot (1)$$

$$\Rightarrow \frac{dy}{dx} = y(1 + \ln x) \Rightarrow \frac{dy}{dx} = x^{x}(1 + \ln x) \dots (i)$$

For critical point, put 
$$\frac{dy}{dx} = 0$$
  
 $\Rightarrow x^x (1 + \ln x) = 0 \Rightarrow 1 + \ln x = 0 \text{ as } x^x \neq 0$   
 $\Rightarrow \ln x = -1 \Rightarrow \ln x = -\ln e \qquad \because \ln e = 1$   
 $\Rightarrow \ln x = \ln e^{-1} \Rightarrow x = e^{-1} \Rightarrow x = \frac{1}{e}$   
Diff. (i) w.r.t  $x$   
 $\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} x^x (1 + \ln x)$   
 $\Rightarrow \frac{d^2 y}{dx^2} = x^x \frac{d}{dx} (1 + \ln x) + (1 + \ln x) \frac{d}{dx} x^x$   
 $= x^x \cdot \frac{1}{x} + (1 + \ln x) \cdot x^x (1 + \ln x) \text{ from (i)}$   
 $= x^x \left(\frac{1}{x} + (1 + \ln x)^2\right)$ 

At 
$$x = \frac{1}{e}$$

$$\frac{d^2 y}{dx^2}\Big|_{x=1/e} = \left(\frac{1}{e}\right)^{\frac{1}{e}} \left(\frac{1}{1/e} + \left(1 + \ln\frac{1}{e}\right)^2\right)$$

$$= \left(\frac{1}{e}\right)^{\frac{1}{e}} \left(e + \left(1 + \ln e^{-1}\right)^2\right) = \left(\frac{1}{e}\right)^{\frac{1}{e}} \left(e + \left(1 - \ln e\right)^2\right)$$

$$= \left(\frac{1}{e}\right)^{\frac{1}{e}} \left(e + \left(1 - 1\right)^2\right) = \left(\frac{1}{e}\right)^{\frac{1}{e}} \cdot e > 0$$

 $\Rightarrow$  y has a minimum value at  $x = \frac{1}{e}$