Exercise 3.1 (Solutions) Page 123 Calculus and Analytic Geometry, MATHEMATICS 12

Question #1

Find δy and dy in the following cases:

- (i) $y = x^2 1$ when x changes from 3 to 3.02
- (ii) $y = x^2 + 2x$ when x changes from 2 to 1.8
- (iii) $y = \sqrt{x}$ when x changes from 4 to 4.41 Solution

(i)
$$y = x^2 - 1$$
 (i)
 $x = 3$ & $\delta x = 3.02 - 3 = 0.02$
 $y + \delta y = (x + \delta x)^2 - 1$
 $\Rightarrow \delta y = (x + \delta x)^2 - 1 - x^2 + 1$
 $= (x + \delta x)^2 - x^2$

Put
$$x = 3 & \delta x = 0.02$$

 $\delta y = (3 + 0.02)^2 - (3)^2$
 $\Rightarrow \delta y = 0.1204$

Taking differential of (i)

$$dy = d\left(x^2 - 1\right)$$

$$\Rightarrow dy = 2x dx$$

Put
$$x = 3$$
 & $dx = \delta x = 0.02$
 $dy = 2(3)(0.02)$
 $\Rightarrow dy = 0.12$

(ii) Do yourself as above.

 $=\frac{1}{2}x^{-\frac{1}{2}} dx$

$$= \frac{1}{2x^{\frac{1}{2}}} dx$$
Put $x = 4$ & $dx = \delta x = 0.41$

$$dy = \frac{1}{2(4)^{\frac{1}{2}}} (0.41)$$

$$= \frac{0.41}{4}$$

$$\Rightarrow dy = 0.1025$$

Ouestion #2

Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the

following equations.

$$(i) xy + x = 4$$

(ii)
$$x^2 + 2y^2 = 16$$

(i)
$$xy + x = 4$$

(ii) $x^2 + 2y^2 = 16$
(iii) $x^4 + y^2 = xy^2$
(iv) $xy - \ln x = c$

(iv)
$$xy - \ln x = c$$

Solution

$$(i) xy + x = 4$$

Taking differential on both sides

$$d(xy) + dx = d(4)$$

$$\Rightarrow xdy + ydx + dx = 0$$

$$\Rightarrow xdy + (y+1)dx = 0$$

$$\Rightarrow xdy = -(y+1)dx$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y+1}{x}$$
&
$$\frac{dx}{dy} = -\frac{x}{y+1}$$

(ii) Do yourself as above

(iii)
$$x^{4} + y^{2} = xy^{2}$$
Taking differential
$$d(x^{4}) + d(y^{2}) = d(xy^{2})$$

$$\Rightarrow 4x^{3}dx + 2ydy = x \cdot 2ydy + y^{2}dx$$

$$\Rightarrow 2ydy - 2xydy = y^{2}dx - 4x^{3}dx$$

$$\Rightarrow 2y(1-x)dy = (y^{2} - 4x^{3})dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{y^{2} - 4x^{3}}{2y(1-x)}$$
&
$$\frac{dx}{dy} = \frac{2y(1-x)}{y^{2} - 4x^{3}}$$

(iv)
$$xy - \ln x = c$$

FSc-II / Ex- 3.1 - 2

Taking differential
$$d(xy) - d(\ln x) = d(c)$$

$$\Rightarrow xdy + ydx - \frac{1}{x}dx = 0$$

$$\Rightarrow xdy = \frac{1}{x}dx - ydx$$

$$= \left(\frac{1}{x} - y\right)dx$$

$$\Rightarrow xdy = \left(\frac{1 - xy}{x}\right)dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{1 - xy}{x^2}$$

$$\frac{dx}{dy} = \frac{x^2}{1 - xy}$$

Question #3

Using differentials to approximate the values of

(i)
$$\sqrt[4]{17}$$

$$(ii)(31)^{\frac{1}{5}}$$

(iv) sin 61°

Solution

(i) Let $y = f(x) = \sqrt[4]{x}$ where x = 16 and $\delta x = dx = 1$ Taking differential of above

$$dy = d\left(\sqrt[4]{x}\right)$$

$$= d\left(x\right)^{\frac{1}{4}}$$

$$= \frac{1}{4}x^{\frac{1}{4}-1}dx$$

$$= \frac{1}{4}x^{-\frac{3}{4}}dx$$

$$= \frac{1}{4}x^{\frac{3}{4}}dx$$

Put x=16 and dx=1 $dy = \frac{1}{4(16)^{\frac{3}{4}}}(1)$ $= \frac{1}{4(2^4)^{\frac{3}{4}}}$

$$=\frac{1}{4(8)}=0.03125$$

Now $f(x+dx) \approx y+dy$ = f(x)+dy $\therefore y = f(x)$ $\Rightarrow \sqrt[4]{16+1} \approx \sqrt[4]{16}+0.03125$ $\Rightarrow \sqrt[4]{17} \approx (2^4)^{\frac{1}{4}}+0.03125$

$$= 2 + 0.03125$$

 $= 2.03125$

(ii) Let $y = f(x) = x^{\frac{1}{5}}$ Where x = 32 & $\delta x = dx = -1$ Try yourself as above.

(iii) Let
$$y = f(x) = \cos x$$

Where
$$x = 30^{\circ}$$
 & $\delta x = -1^{\circ} = -\frac{\pi}{180}$ rad
= -0.01745 rad

Now
$$dy = d(\cos x)$$

= $-\sin x dx$

Put
$$x = 30^{\circ}$$
 and $dx = \delta x = -0.01745$
 $dy = -\sin 30^{\circ} (-0.01745)$
 $= -(0.5)(-0.01745) = 0.008725$

Now
$$f(x+\delta x) \approx y+dy$$

= $f(x)+dy$
 $\Rightarrow \cos(30-1) = \cos 30^{\circ} + 0.008725$
 $\Rightarrow \cos 29^{\circ} = 0.866 + 0.008725$
= 0.8747

(iv) Let
$$y = f(x) = \sin x$$

Where
$$x = 60^{\circ}$$
 & $\delta x = 1^{\circ} = \frac{\pi}{180}$ rad
= 0.01745 rad

Now
$$dy = d(\sin x)$$

= $\cos x \, dx$

Put
$$x = 60^{\circ}$$
 and $dx = \delta x = 0.01745$
 $dy = \cos 60^{\circ} (0.01745)$
 $= (0.5)(0.01745) = 0.008725$

Now
$$f(x+\delta x) \approx y+dy$$

= $f(x)+dy$
 $\Rightarrow \sin(60+1) = \sin 60^{\circ} + 0.008725$
 $\Rightarrow \sin 61^{\circ} = 0.866 + 0.008725$
= 0.8747

Question # 4

Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02...

Solution

Let x be the length of side of cube where x = 5 & $\delta x = 5.02 - 5 = 0.02$ Assume V denotes the volume of the cube.

Then
$$V = x \cdot x \cdot x$$

= x^3

Taking differential

$$dV = 3x^2 dx$$

Put
$$x = 5$$
 & $dx = \delta x = 0.02$

$$dV = 3(5)^{2}(0.02)$$

= 1.5

Hence increase in volume is 1.5 cubic unit.