

THE CELL

Biology F.Sc. Part-I

ι.	Which one of following is true about chloroplast?					
	(A)	It is underground part	(B)	It helps in pollination		
	(C)	Self replicating organelle	(D)	Involve in Lipid synthesis		
2.	One	of the following is not double	mem	branous structure:		
	(A)	Mitochondrion	(B)	Vacuole		
	(C)	Chloroplast	(D)	Nucleus		
3.	Tay	Sach's disease is because of:				
	(A)	Accumulation of proteins	(B)	Accumulation of glycogen		
	(C)	Accumulation of lipids	(D)	Accumulation of vitamins		
4.	Mod	lification of proteins and lipids	as gly	copeptides and lipo-proteins occurs in:		
	(A)	Ribosomes	(B)	Golgi apparatus		
	(C)	SER	(D)	All (A), (B) and (C)		
5.	Ribo	osomes are chemically compos	ed of:	:		
	(A)	Protein	(B)	Only DNA		
	(C)	RNA	(D)	Both $(A) + (C)$		
5.	Deto	oxification of harmful drugs is	the fu	unction:		
	(A)	RER	(B)	SER		
	(C)	Both (A) and (B)	(D)	None of the above		
7.	Whi	ch type of cell would probably	be m	ost appropriate to study chloroplasts?		
	(A)	Conducting cell	(B)	Photosynthetic cell		
	(C)	Pericycle cell	(D)	All options are correct		

8.	Cell	wall consists of:		
	(A)	One main layer	(B)	Two main layers
	(C)	Three main layers	(D)	Four main layers
9.	Leu	coplasts are found in:		
	(A)	Petals	(B)	Ripened fruits
	(C)	Underground parts	(D)	Leaves
10.	The	intake of solid food by infloding	ng of	cell membrane is called:
	(A)	Exocytosis	(B)	Pinocytosis
	(C)	Phagocytosis	(D)	Both (B) and (C)
11.		structure within a cell that dis	stingu	ishes the cell as being eukaryotic, and
	(A)	Ribosomes	(B)	Cell membrane
	(C)	Cell wall	(D)	Nucleus
12.	Mic	rotubules consist of helically st	acke	d molecules of the protein:
	(A)	Actin	(B)	Myosin
	(C)	Keratin	(D)	Tubulin
13.	The	microfilaments are composed	of:	
	(A)	Actin protein	(B)	Gelatin protein
	(C)	Keratin protein	(D)	Tubulin protein
14.	Lyso	osomes have:		
	(A)	Single-layered membrane	(B)	Double-layered membrane
	(C)	Three-layered membrane	(D)	No membrane
15.	Whi cycle		rly as	sembled and disassembled during cell
	(A)	Microtubules	(B)	Intermediate filaments
	(C)	Both (A) and (B)	(D)	None of these
16.	Plan	t cell wall:		
	(A)	Provide rigidity to the cell	(B)	Maintains cell shape
	(C)	Prevents expansion of cell	(D)	All (A), (B) and (C)

17.	In w	In which organelle following reaction takes place?					
	6CC	$6CO_2 + 6H_2O + Energy (from sunlight) \longrightarrow C_6H_{12}O_6 + 6O_2$					
	(A)	Mitochondrion	(B)	Peroxisome			
	(C)	Chloroplast	(D)	Glyoxysome			
18.	SER	R is abundant in cells that are i	nvolv	ed in:			
	(A)	Lipid metabolism	(B)	Protein metabolism			
	(C)	Glucose metabolism	(D)	Calcium metabolism			
19.	The	transport vesicles from the I of the Golgi apparatu	_	olasmic Reticulum (ER) fuse with the			
	(A)	Cis face	(B)	Trans face			
	(C)	Coated face	(D)	Both (A) and (B)			
20.	The	door to your house is like the		of a cell membrane.			
	(A)	Phospholipid bilayer	(B)	Integral protein			
	(C)	Recognition protein	(D)	Peripheral protein			
21.	The	-	to w	ed across a chamber filled with water. ater. 60 mg of salt is added to the left ving will happen?			
	(A)	Water will move toward the ri	ght sic	de			
	(B)	Salt will move toward the righ	t side				
	(C)	Water will move toward the left side					
	(D)	Salt will move toward the left	side				
22.	Dye	injected into a plant cell might	be al	ole to enter an adjacent cell through a:			
	(A)	Tight junction	(B)	Microtubule			
	(C)	Desmosome	(D)	Plasmodesma			
23.	Wha	at are the two faces of the Golg	gi bod	y?			
	(A)	Funny face and goofy face	(B)	Coated face and non-coated face			
	(C)	Saving face and loosing face	(D)	Cis face and Trans face			
24.	Adj	acent plant cells are "cemente	d" tog	gether by:			
	(A)	Their primary walls	(B)	Their secondary walls			
	(C)	A middle lamella	(D)	Plasmodesmata			

25.	. What is a microscope's ability to distinguish between separate objects the are close together?			nguish between separate objects that
	(A)	Magnification	(B)	Contrast
	(C)	Resolving power	(D)	Scanning power
26.		at is the power of the objecti er 10x is used and the total ma		ns of a microscope if an eyepiece of cation of the object is 40x?
	(A)	4	(B)	10
	(C)	40	(D)	400
27.	Witl	hin chloroplasts, light is captu	red by	y:
	(A)	Grana within cisternae	(B)	Thylakoids within grana
	(C)	Cisternae within grana	(D)	Grana within thylakoids
28.		gene mutation prevents form somes, a disease may result kn		n of an enzyme normally used by a as:
	(A)	Lysosomal abstracted disease	(B)	Lysosomal secretory disease
	(C)	Lysosomal storage disease	(D)	All (A), (B) and (C)
29.	of h			on of lower concentration to a region cells of humans. This process is an
	(A)	Diffusion	(B)	Passive transport
	(C)	Osmosis	(D)	Active transport
30.	The as x	- /	icture	of chloroplast. The structure labeled
				X
	(A)	Granum	(B)	Stroma
	(C)	Frets	(D)	Lamella

31.	Which of the following correctly matches an organelle with its function?					
	(A)	Mitochondrion photosynthe	sis			
	(B)	Nucleus cellular respiration				
	(C) Ribosome manufacture of lipids					
	(D)	Central vacuole storage				
32.		which of the following can nobranes be accomplished?	nover	ment of materials across animal cell		
	I. A	ctive transport, II. Diffusion,	III.	Pinocytosis		
	(A)	I only	(B)	II only		
	(C)	I and II only	(D)	All I, II, and III		
33.	Hyd	rogen peroxide degradation in	a cel	ll is a function of:		
	(A)	Ribosomes	(B)	Mitochondria		
	(C)	Peroxisomes	(D)	Glyoxisomes		
34.	unla	·		ab. If you were examining various croscope, you could tell if the cell was		
	(A)	A nucleus	(B)	A cell membrane		
	(C)	Cytoplasm	(D)	A cell wall		
35.	Ribo	osomes are constructed in the:				
	(A)	Endoplasmic reticulum	(B)	Nucleoid		
	(C)	Nucleolus	(D)	Nuclear pore		
36.	Eacl	h chloroplast encloses a system	of fl	attened, membranous sacs called:		
	(A)	Cristae	(B)	Thylakoids		
	(C)	Plastids	(D)	Cisternae		
37.	Whi	ch one of the following is an ex	cepti	ion to cell theory?		
	(A)	Bacteria	(B)	Viruses		
	(C)	Protists	(D)	Protozoans		
38.		site of enzymes directing th hesis and considered as power		etabolic oxidation (respiration), ATP e of cell are:		
	(A)	Lysosomes	(B)	Microsomes		
	(C)	Mitochondria	(D)	Golgi apparatus		

Dict	yosome is also known as:		
(A)	Golgi body	(B)	Ribosome
(C)	Lysosome	(D)	Peroxisome
Bioc	chemically the ribosome cons	ists of	f ——— and some 50 structural
(A)	mRNA, carbohydrates	(B)	tRNA, lipids
(C)	mRNA, proteins	(D)	rRNA, proteins
	a mesh of interconnected nein synthesis and transport.	ıembı	ranes that serve a function involving
(A)	Endoplasmic reticulum	(B)	Cytoskeleton
(C)	Golgi apparatus	(D)	Both (A) and (B)
Plan	at cells contain the following 3	things	not found in animal cells:
(A)	Plastids / Chlorophyll / Memb	rane	
(B)	Chloroplast / Cell wall / Golgi	body	
(C)	Plastids / Cell wall / Chloroph	yll	
(D)	Mitochondria / Cell wall / Nuc	leus	
The	largest organelle in a mature	living	plant cell is the:
(A)	Chloroplast	(B)	Nucleus
(C)	Central vacuole	(D)	Dictyosomes
Whi	ich of the following structure-	functi	on pairs is mismatched?
(A)	Lysosome-intracellular digesti	.on	
(B)	Golgi body-secretion of cell pr	roduct	s
(C)	Ribosome-protein synthesis		
(D)	Glyoxysome-detoxification		
	three-dimensional network o aryotic cells is called the:	f prot	tein filaments within the cytoplasm of
(A)	Endoplasmic reticulum	(B)	Golgi apparatus
(C)	Cytoskeleton	(D)	None of these
Whi	ich of the following is not a me	mbra	nous organelle?
(A)	Lysosomes	(B)	Peroxisomes
(C)	Centrioles	(D)	Mitochondria

47.	A cell that is missing lysosomes would have difficulty doing what?			
	(A)	Digesting food	(B)	Storing energy
	(C)	Packaging proteins	(D)	Moving cytoplasm
48.	Whi	ich of the following cell part is	descr	ibed as a "fluid mosaic"?
	(A)	Chloroplast	(B)	Vacuole
	(C)	Cell membrane	(D)	Endoplasmic reticulum
49.	Wha	at part of the cell serves as the	intra	cellular highway?
	(A)	Endoplasmic reticulum	(B)	Golgi apparatus
	(C)	Cell membrane	(D)	Mitochondria
50.	Whi	ich of the following would you	not fi	nd in a bacterial cell?
	(A)	DNA	(B)	Cell membrane
	(C)	Golgi apparatus	(D)	Ribosomes
51.	Som	atic cells of a human have —		chromosomes and are called:
	(A)	10, haploid	(B)	92, diploid
	(C)	23, haploid	(D)	46, diploid
52.	Eacl	h chromosome consists of two	ident	ical:
	(A)	Genes	(B)	Nuclei
	(C)	Chromatids	(D)	Bases
53.		animal has 80 chromosomes ld you expect to find in this an		s gametes, how many chromosomes brain cells?
	(A)	120	(B)	240
	(C)	40	(D)	160
54.	The	length of each mitochondrion	is ab	out:
	(A)	1.0 μm	(B)	0.2 μm
	(C)	10 μm	(D)	2.0 μm
55.	Isola calle	_	to det	ermine their chemical composition is
	(A)	Cell differentiation	(B)	Chromatography
	(C)	Cell fractionation	(D)	All of these

56.		ording to mosaic model by posed of:	Singer	and	Nicholson	plasma	membrane is
	(A)	Phospholipids	(B)	Extr	insic protei	ns	
	(C)	Intrinsic proteins	(D)	All c	of these		
57.	Rob	ert Brown is well known for	his disc	covery	y of:		
	(A)	Chloroplast	(B)	Phot	ometer		
	(C)	Nucleus	(D)	Nucl	eolus		
58.	Whi	ch organelle releases oxygen	?				
	(A)	Mitochondrion	(B)	Chlo	roplast		
	(C)	Glyoxysome	(D)	Both	(A) and (H	3)	
59.	End	oskeleton of a cell is made u	p of:				
	(A)	Microtubules	(B)	Micr	ofilaments		
	(C)	Intermediate filaments	(D)	All	of these		
60.	Ribo	osomes are attached with ER	by:				
	(A)	Larger subunit	(B)	Sma	ller subunit		
	(C)	Na ⁺ ions	(D)	None	e of these		
61.	The	outer most layer of cell wall	is:				
	(A)	Primary wall	(B)	Seco	ndary wall		
	(C)	Middle lamella	(D)	Plasi	ma membra	ine	
62.	Info	ldings of inner membrane in	mitoch	ondr	ia are calle	ed:	
	(A)	Grana	(B)	Thya	allkoids		
	(C)	Cristae	(D)	Frets	3		
63.	Chr	omosome with equal arms is	called:				
	(A)	Metacentric	(B)	Sub-	metacentri	С	
	(C)	Acrocentric	(D)	Telo	centric		
64.		romosome with the centron ter arm is very small is term		ated	very close	to one e	nd so that the
	(A)	Telocentric	(B)	Sub-	telocentric		
	(C)	Acrocentric	(D)	Both	(B) and (C	C)	

65.	The matrix surrounding the grana in the inner membrane of chloroplasts is:			
	(A)	Cytosol	(B)	Frets
	(C)	Stroma	(D)	Inter-granal lamellae
66.	A ch	romosome whose centromere	lies a	t one end:
	(A)	Sum-metacentric	(B)	Metacentric
	(C)	Telocentric	(D)	Acrocentric
67.	Lyso	osomes arise from:		
	(A)	Nucleus	(B)	Endoplasmic reticulum
	(C)	Golgi apparatus	(D)	Cell membrane
68.	The	primary structural componen	ts of	centrioles are:
	(A)	Microtubules	(B)	Microfilaments
	(C)	Intermediate filaments	(D)	Basal bodies
69.				ve non-functional organelles by a cell ng within the cell is referred to as:
	(A)	Pinocytosis	(B)	Endocytosis
	(C)	Autophagy	(D)	Cytotoxicity
70.	"Pro	otein's icebergs in a sea of lipio	ls" is	stated by:
	(A)	Lamellar model	(B)	Unit-membrane model
	(C)	Fluid-mosaic model	(D)	Micellar model
71.	The	chloroplasts develop from:		
	(A)	ER	(B)	Golgi complex
	(C)	Nuclear membrane	(D)	Proplastids
72.	Perc	oxisomes and Glyoxisomes are	:	
	(A)	Energy transducers	(B)	Membrane-less organelles
	(C)	Micro bodies	(D)	Basal bodies
73.	The		of fa	ats to carbohydrates by oxidation of
	(A)	Peroxisomes	(B)	Microsomes
	(C)	Glyoxisomes	(D)	Phagosomes

- 74. Xanthophyll is a pigment having:
 - (A) Yellow colour

(B) Green colour

(C) Red colour

- (D) Blue colour
- 75. The covering of vacuole is known as:
 - (A) Chromoplast

(B) Chloroplast

(C) Amyloplast

- (D) Tonoplast
- 76. Insulin is secreted from cells by a process called:
 - (A) Endocytosis

(B) Pinocytosis

(C) Phagocytosis

- (D) Exocytosis
- 77. ———increases size of an object.
 - (A) Magnification

- (B) Resolution
- (C) Resolving power
- (D) Contrast
- 78. The chromosome "B" in this diagram is:

(A) Metacentric

(B) Sub-metacentric

(C) Acrocentric

- (D) Telocentric
- 79. Select the correct for label "B" in this diagram:

- (A) Endoplasmic reticulum
- (B) Peroxisome

(C) Golgi apparatus

(D) Glyoxysome

80.		Which of the following organelles or structures is found in both plant and animal cells?					
	(A)	Central vacuole	(B)	Tonoplast			
	(C)	Cell wall	(D)	Peroxisomes			
81.	Eryt	throcytes have:					
	(A)	Only 5 or 6 pores/nucleue	(B)	Only 3 or 4 pores/nucleus			
	(C)	Only 2 or 4 pores/nucleus	(D)	Only 4 or 5 pores/nucleus			
82.	Chir	npanzee has:					
	(A)	44 chromosomes	(B)	47 chromosomes			
	(C)	48 chromosomes	(D)	46 chromosomes			
83.	Whi	ch statement about nucleolus i	s not	true?			
	(A)	Without membranous boundary	(B)	Hereditary center			
	(C)	Synthesize site for rRNA	(D)	Composed of two regions			
84.	Whi	ch one of following is true abo	ut ch	loroplast?			
	(A)	Self replicating organelles					
	(B)	Found in underground parts of	plant	s			
	(C)	Involve in protein synthesis					
	(D)	Help in pollination and dispers	al of s	seeds.			
85.	One	of the following is not double	meml	branous structure:			
	(A)	Chloroplast	(B)	Nucleus			
	(C)	Mitochondria	(D)	Vacuole			
86.	Tay	Sach's disease is because of:					
	(A)	Accumulation of glycogen	(B)	Accumulation of vitamins			
	(C)	Accumulation of lipids	(D)	Accumulation of proteins			
87.	Lyso	osomal sacs are rich in:					
	(A)	Acid Phosphotase and hydroly	tic en	zymes			
	(B)	None of above					
	(C)	Acid oxidase and hydrolytic en	zyme	s			
	(D)	Reductase and oxidases only.					

88.	Mod	lification of proteins and lipids	as gly	copeptides and glycoproteins occur in:
	(A)	Golgi apparatus	(B)	Ribosomes
	(C)	SER	(D)	All of above
89.	Ribe	osomes are chemically compos	ed of:	
	(A)	Only Protein	(B)	Only DNA
	(C)	Only RNA	(D)	Both $(A) + (C)$
90.	Golg	gi apparatus was discovered by	y Gol	gi in:
	(A)	1889	(B)	1897
	(C)	1896	(D)	1898
91.	Dete	oxification of harmful drugs is	the f	unction of:
	(A)	RER	(B)	SER
	(C)	(A) and (B) both	(D)	None of above
92.	Gro	wth and development of plant	is the	function of:
	(A)	Parenchymatous cells	(B)	Chlorenchymatous cells
	(C)	Meristematic cells	(D)	Sclerenchymatous cells
93.	Om	nis callula e cellula is hypothes	ized l	oy:
	(A)	Schleiden	(B)	Lorenz Oken
	(C)	Louis pasture	(D)	Rudolph Virchow
94.	Mite	ochondria are composed of:		
	(A)	Proteins only		
	(B)	DNA only		
	(C)	Enzyme, coenzyme, inorganic	and o	rganic salts
	(D)	All of above		
95.	Whi	ich type of cell would probably	be m	ost appropriate to study chloroplasts?
	(A)	Conducting cell	(B)	Epidermal cell
	(C)	Photosynthetic cell	(D)	None of above
96.		ert Hooke in 1665 reporte lication:	ed hi	s work about cell in his famous
	(A)	Insectia	(B)	Virology
	(C)	Micrographia	(D)	Ecology

97.	Who reported the presence of nucleus in the cell.			
	(A)	Robert Hook	(B)	Robert Brown
	(C)	Rudolph Virchow	(D)	Lorenz Oken
98.	In a	typical compound microscope	the r	resolution is:
	(A)	4 μm	(B)	20 μm
	(C)	2 μm	(D)	60 μm
99.	Var	ious parts of cells are separate	d by:	
	(A)	Passive transport	(B)	Density gradient centrifugation
	(C)	Active transport	(D)	Homogenization
100.	Cell	membrance is chemically con	pose	d of lipids and:
	(A)	Phagocytosis	(B)	Protoplasm
	(C)	Active transport	(D)	Protein
101.	The	movement of material, requir	es en	ergy is called:
	(A)	Active transport	(B)	Osmosis
	(C)	Passive transport	(D)	Diffusion
102.	The	intake of solid food by inflodi	ng of	cell membrane is called:
	(A)	Chitin	(B)	Protein
	(C)	Phagocytosis	(D)	Protoplasm
103.	Cell	wall is secreted by:		
	(A)	Phagocytosis	(B)	Protoplasm
	(C)	Chitin	(D)	Polysomes
104.	Fun	gal cell wall contains:		
	(A)	Chitin	(B)	Polysomes
	(C)	Cytosole	(D)	Cisternae
105.	The	soluble part of cytoplasm is:		
	(A)	Cytosole	(B)	Polysomes
	(C)	Cisternae	(D)	Chitin
106.	The	most important function of cy	topla	sm for vital chemicals is to act as:
	(A)	Activity site	(B)	Store house
	(C)	Wastes	(D)	None of the above

107.		E.R. material is separated fular membranes, called:	rom	cytoplasmic material by spherical or			
	(A)	Chitin	(B)	Cytosole			
	(C)	Cisternae	(D)	Protoplasm			
108.	A gr	oup of ribosomes attached to	m.R.I	N.A. are known as:			
	(A)	Phagocytosis	(B)	Protein			
	(C)	Protoplasm	(D)	Polysomes			
109.	The	eukaryotic larger sub unit sed	limen	ts at:			
	(A)	60S	(B)	50S			
	(C)	70S	(D)	40S			
110.	Ribo	osomes are synthesized in:					
	(A)	Nucleolus	(B)	Polysomes			
	(C)	Cisternae	(D)	Active transport			
111.	The	factory for protein synthesis i	s:				
	(A)	Store house	(B)	Ribosomes			
	(C)	Cisternae	(D)	Phagocytosis			
112.	The cisternae with associated vericles is called:						
	(A)	Glyoxisomes	(B)	Cisternae			
	(C)	Golgi complex	(D)	Lysosomes			
113.	. Which one is concerned with cell secretion:						
	(A)	Lysosomes	(B)	Golgi complex			
	(C)	Intermediate filament	(D)	Plant seedling			
114.	Pha	gocytosis, autophagy and extra	acellu	lar digestion are the functions of:			
	(A)	Lysosomes	(D)	Exterior			
	(C)	Intermediate filament	(D)	Plant seedling			
115.	Peroxisomes, in diameter, are approximately:						
	(A)	0.5 μm	(B)	1.5 μm			
	(C)	2.00 μm	(D)	1.00 μm			
116.	Gly	oxisomes are most abundantly	foun	d in:			
	(A)	Golgi complex	(B)	Ribosomes			
	(C)	Actin	(D)	Plant seedling			

117.	Rigidity of leaves and younger parts of plant is contributed by:					
	(A)	Microtubules	(B)	Mitochondria		
	(C)	Actin	(D)	Glyoxisomes		
118.	Lon	g, unbranched, slender tubuli	n pro	tein structure is:		
	(A)	Lysosomes	(B)	Microtubules		
	(C)	Mitochondria	(D)	Nucleolus		
119.	Mic	ro filaments are composed of c	contra	actile ———protein.		
	(A)	Intensor	(B)	Exterior		
	(C)	Actin	(D)	Ribosomal		
120.	Mai	ntenance of cell shape is the ro	ole of:			
	(A)	Cristae	(B)	Microtubules		
	(C)	Glyoxisomes	(D)	Intermediate filament		
121.	In a	nimal cell, two centrioles locat	ed ne	ar the ———of nucleus.		
	(A)	Exterior	(B)	Nuclear membrane		
	(C)	Nuclear pore	(D)	Nucleolus		
122.	Whi	ch organelle is known as powe	er hou	ise of cell?		
	(A)	Chloroplast	(B)	Glyoxisome		
	(C)	Mitochondria	(D)	Microtubules		
123.	Mite	ochondrial infolds are called:				
	(A)	Cisternae	(B)	Cristae		
	(C)	Matrix	(D)	Grana		
124.	The inner surface of crystal in mitochondrial matrix has small knob lik structure known as:					
	(A)	Cisternae	(B)	Cristae		
	(C)	Grana	(D)	F ₁ particles		
125.	Membranes bounded, mostly pigmented bodies in cytoplasm of plants conly are:					
	(A)	Lysosomes	(B)	Cristae		
	(C)	Ribosomes	(D)	Plastids		

126.	Under electron microscope, a chloroplast shown three main components envelope, the stroma and the:							
	(A)	Thylakoid	(B)	F ₁ particles				
	(C)	Granum	(D)	Centerosome.				
127.	On a	are average, there are 50 or more thylakoids piled to form one:						
	(A)	Granum	(B)	Centerosome				
	(C)	Centerosome.	(D)	Multinucleate				
128.	Gra	na is the site for:						
	(A)	Binary Fission	(B)	Dark reaction				
	(C)	Centerosome	(D)	Light reaction				
129.	A ce	ll with many nucleus is called:	}					
	(A)	Nucleoplasm	(B)	A nucleate				
	(C)	Multinucleate	(D)	Binucleate				
130.	The	soluble sap of nucleus is called	l:					
	(A)	Cytoplasm	(B)	Nucleoplasm				
	(C)	Protoplasm	(D)	Protoplast				
131.	Chr	omatids are held together at:						
	(A)	Centerosome	(B)	Loci				
	(C)	Centromere	(D)	None of the above				
132.	The diploid number of potato is:							
	(A)	41	(B)	42				
	(C)	48	(D)	43				
133.	The	Haploid chromosomal numbe	r of h	uman sperms and eggs is:				
	(A)	22	(B)	23				
	(C)	21	(D)	24				
134.	Prol	karyotic cell wall is composed	of:					
	(A)	Lignin	(B)	Chitin				
	(C)	Polysaccharide	(D)	Peptidoglycan or murein				
135.	Prol	karyotes divided by:						
	(A)	Binary Fission	(B)	Spores				
	(C)	Mitosis	(D)	Meiosis				

136.	Con	Contrary idea to abiogenesis was proposed by:						
	(A)	Robert Hook	(B)	Robert Brown				
	(C)	Rudolph virchow	(D)	Lorenz Oken				
137.	Aug	ust weismann:						
	(A)	1885	(B)	Rudolph virchow				
	(C)	Drosophila melanogaster	(D)	1880				
138.	1805	5:						
	(A)	Lorenz Oken	(B)	Drosophila melanogaster				
	(C)	Streaming movement	(D)	Rudolph virchow				
139.	Cyte	oplasm:						
	(A)	Streaming movement	(B)	Rudolph virchow				
	(C)	Lorenz Oken	(D)	Drosophila melanogaster				
140.	Frui	it fly:						
	(A)	Drosophila melanogaster	(B)	Streaming movement				
	(C)	Rudolph virchow	(D)	Lorenz Oken				
141.	Phlo	oem cell:						
	(A)	Lysosomes	(B)	Translocation of food				
	(C)	Nerve cells	(D)	Golgi Apparatus				
142.	Plasma membrane:							
	(A)	Lysosomes	(B)	Differentially permeable				
	(C)	Golgi apparatus	(D)	Nerve cells				
143.	De-c	luve (1949):						
	(A)	Nerve cells	(B)	Differentially permeable				
	(C)	Golgi apparatus	(D)	Lysosomes				
144.	Con	duction of impulse:						
	(A)	Differentially permeable	(B)	Nerve cells				
	(C)	E.R.	(D)	Translocation of food				
145.	For	ming face:						
	(A)	Translocation of food	(B)	Golgi Apparatus				
	(C)	Lysosomes	(D)	Nerve cells				

Answers

Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.	Sr.	Ans.
1.	(C)	2.	(B)	3.	(C)	4.	(B)	5.	(D)
6.	(B)	7.	(B)	8.	(C)	9.	(C)	10.	(C)
11.	(D)	12.	(D)	13.	(A)	14.	(A)	15.	(A)
16.	(D)	17.	(C)	18.	(A)	19.	(A)	20.	(B)
21.	(C)	22.	(D)	23.	(D)	24.	(C)	25.	/ (C)
26.	(A)	27.	(B)	28.	(C)	29.	(D)	30.	(A)
31.	(D)	32.	(D)	33.	(C)	34.	(D)	35.	(C)
36.	(B)	37.	(B)	38.	(C)	39. /	(A)	40.	(D)
41.	(A)	42.	(C)	43.	(C)	44.	(D)	45.	(C)
46.	(C)	47.	(A)	48.	(C)	49.	(A)	50.	(C)
51.	(D)	52.	(C)	53.	(D)	54.	(C)	55.	(C)
56.	(D)	57.	(C)	58.	(B)	59.	(D)	60.	(A)
61.	(C)	62.	(C)	63.	(A)	64.	(D)	65.	(C)
66.	(C)	67.	(C)	68.	(A)	69.	(C)	70.	(C)
71.	(D)	72.	(C) /	73.	(C)	74.	(A)	75.	(D)
76.	(D)	77.	(A)	78.	(B)	79.	(C)	80.	(D)
81.	(B)	82.	(C)	83.	(B)	84.	(A)	85.	(D)
86.	(C)	87.	(A)	88.	(A)	89.	(C)	90.	(D)
91.	(D)	92.	(A)	93.	(D)	94.	(B)	95.	(C)
96.	(C)	97.	(B)	98.	(C)	99.	(B)	100.	(D)
101.	(A)	102.	(C)	103.	(B)	104.	(A)	105.	(A)
106.	(A)	107.	(C)	108.	(D)	109.	(A)	110.	(A)
111.	(B)	112.	(C)	113.	(B)	114.	(A)	115.	(A)
116.	(D)	117.	(D)	118.	(B)	119.	(C)	120.	(D)
121.	(A)	122.	(C)	123.	(B)	124.	(D)	125.	(D)
126.	(A)	127.	(A)	128.	(D)	129.	(C)	130.	(A)
131.	(C)	132.	(B)	133.	(D)	134.	(A)	135.	(A)
136.	(C)	137.	(D)	138.	(A)	139.	(A)	140.	(A)
141.	(B)	142.	(B)	143.	(D)	144.	(B)	145.	(B)