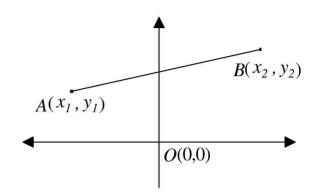
Exercise 4.1 (Solutions) Page 185 Calculus and Analytic Geometry, MATHEMATICS 12

Distance Formula

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points in a plane and d be a distance between A and Bthen

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
See proof on book at page 181



Ratio Formula

or

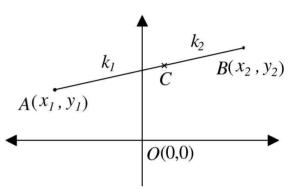
Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points in a plane. The coordinates of the point C dividing the line segment AB in the ratio $k_1:k_2$ are

$$\left(\frac{k_1 x_2 + k_2 x_1}{k_1 + k_2}, \frac{k_1 y_2 + k_2 y_1}{k_1 + k_2}\right)$$

See proof on book at page 182

If C be the midpoint of AB i.e. $k_1: k_2 = 1:1$ then coordinate of C becomes

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$



Question #1

Describe the location in the plane of the point P(x, y) for which

(i)
$$x > 0$$

(ii)
$$x > 0$$
 and $y > 0$

(iii)
$$x = 0$$

(iv)
$$y = 0$$

(v)
$$x < 0$$
 and $y \ge 0$

(vi)
$$x = y$$

(vii)
$$|x| = -|y|$$
 (viii) $|x| \ge 3$

(viii)
$$|x| \ge 3$$

(ix)
$$x > 2$$
 and $y = 2$

(x) x and y have opposite signs.

Solution

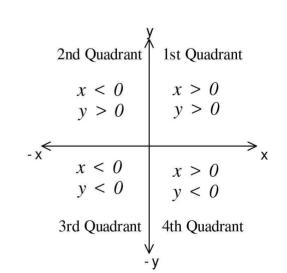
(i) x > 0Right half plane

(ii) x > 0 and y > 0The 1st quadrant.

(iii)
$$x = 0$$

y-axis

(iv) y = 0x-axis

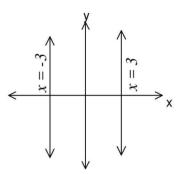


- (v) x < 0 and $y \ge 0$ 2^{nd} quadrant & negative x-axis
- (vi) x = yIt is a line bisecting 1st and 3rd quadrant.

(vii)
$$|x| = -|y|$$

A positive value can't equal to a negative value, except number zero, so origin,

(0,0), is the only point which satisfies |x| = -|y|



(viii)
$$|x| \ge 3$$

 $\Rightarrow \pm x \ge 3 \Rightarrow x \ge 3 \text{ or } -x \ge 3$
 $\Rightarrow x \ge 3 \text{ or } x \le -3$

which is the set of points lying on right side of the line x = 3 and the points lying on left side of the line x = -3.

- (ix) x > 2 and y = 2The set of all points on the line y = 2 for which x > 2.
- (x) x and y have opposite signs. It is the set of points lying in 2^{nd} and 4^{th} quadrant.

Question # 2

Find each of the following

- (i)the distance between the two given points
- (ii) Midpoint of the line segment joining the two points

(a)
$$A(3,1): B(-2,-4)$$
 (b) $A(-8,3); B(2,-1)$ (c) $A(-\sqrt{5},-\frac{1}{3}); B(-3\sqrt{5},5)$

Solution

(a) A(3,1); B(-2,-4)

(i)
$$|AB| = \sqrt{(-2-3)^2 + (-4-1)^2} = \sqrt{(-5)^2 + (-5)^2}$$

= $\sqrt{25+25} = \sqrt{50} = \sqrt{25\times2} = 5\sqrt{2}$

(ii) Midpoint of
$$AB = \left(\frac{3-2}{2}, \frac{1-4}{2}\right) = \left(\frac{1}{2}, \frac{-3}{2}\right)$$

(b)
$$A(-8,3)$$
; $B(2,-1)$
Do yourself as above.

Review:

The midpoint of $A(x_1, y_1)$ and $B(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

(c)
$$A\left(-\sqrt{5}, -\frac{1}{3}\right)$$
 ; $B\left(-3\sqrt{5}, 5\right)$

(i)
$$|AB| = \sqrt{\left(-3\sqrt{5} + \sqrt{5}\right)^2 + \left(5 + \frac{1}{3}\right)^2} = \sqrt{\left(2\sqrt{5}\right)^2 + \left(\frac{16}{3}\right)^2}$$

$$= \sqrt{20 + \frac{256}{9}} = \sqrt{\frac{436}{9}} = \sqrt{\frac{4 \times 109}{9}} = \frac{2\sqrt{109}}{3}$$
(ii) Midpoint of $AB = \left(\frac{-\sqrt{5} - 3\sqrt{5}}{2}, \frac{-\frac{1}{3} + 5}{2}\right) = \left(\frac{-4\sqrt{5}}{2}, \frac{\frac{14}{3}}{2}\right) = \left(-2\sqrt{5}, \frac{7}{3}\right)$

Question #3

Which of the following points are at a distance of 15 units from the origin?

(a)
$$(\sqrt{176},7)$$
 (b) $(10,-10)$ (c) $(1,15)$ (d) $(\frac{15}{2},\frac{15}{2})$

Solution

(a) Distance of
$$(\sqrt{176}, 7)$$
 from origin $= \sqrt{(\sqrt{176} - 0)^2 + (7 - 0)^2}$
 $= \sqrt{(176) + (49)}$
 $= \sqrt{(176) + (49)} = \sqrt{225} = 15$

 \Rightarrow the point $(\sqrt{176},7)$ is at 15 unit away from origin.

(b) Distance of (10,-10) from origin
$$= \sqrt{(10-0)^2 + (-10-0)^2}$$

 $= \sqrt{100+100} = \sqrt{200}$
 $= \sqrt{100\times2} = 10\sqrt2 \neq 15$

 \Rightarrow the point (10,-10) is not at distance of 15 unit from origin.

(c) Do yourself as above

(d) Distance of
$$\left(\frac{15}{2}, \frac{15}{2}\right)$$
 from origin $= \sqrt{\left(\frac{15}{2} - 0\right)^2 + \left(\frac{15}{2} - 0\right)^2}$
 $= \sqrt{\frac{225}{4} + \frac{225}{4}} = \sqrt{\frac{225}{2}} = \frac{15}{\sqrt{2}} \neq 15$

Hence the point $\left(\frac{15}{2}, \frac{15}{2}\right)$ is not at distance of 15 unit from origin.

Question #4

Show that

(i) the point A(0,2), $B(\sqrt{3},-1)$ and C(0,-2) are vertices of a right triangle.

- (ii) the point A(3,1), B(-2,-3) and C(2,2) are vertices of an isosceles triangle.
- (iii) the point A(3,1), B(-2,-3) and C(2,2) and D(4,-5) are vertices of a parallelogram. Is the parallelogram a square?

Solution

(i) Given: A(0,2), $B(\sqrt{3},-1)$ and C(0,-2)

$$|AB| = \sqrt{(\sqrt{3} - 0)^2 + (-1 - 2)^2} = \sqrt{(\sqrt{3})^2 + (-3)^2}$$

$$= \sqrt{3 + 9} = \sqrt{12} \qquad \Rightarrow |AB|^2 = 12$$

$$|BC| = \sqrt{(0 - \sqrt{3})^2 + (-2 + 1)^2} = \sqrt{(-\sqrt{3})^2 + (-1)^2}$$

$$= \sqrt{3 + 1} = \sqrt{4} = 2 \qquad \Rightarrow |BC|^2 = 4$$

$$|CA| = \sqrt{(0 - 0)^2 + (2 + 2)^2} = \sqrt{0 + (4)^2}$$

$$= \sqrt{16} = 4 \qquad \Rightarrow |CA|^2 = 16$$

$$\therefore |AB|^2 + |BC|^2 = 12 + 4 = 16 = |CA|^2$$

 \therefore by Pythagoras theorem A, B & C are vertices of a right triangle.

(ii) Given:
$$A(3,1)$$
, $B(-2,-3)$ and $C(2,2)$

$$|AB| = \sqrt{(-2-3)^2 + (-3-1)^2} = \sqrt{(-5)^2 + (-4)^2} = \sqrt{25+16} = \sqrt{41}$$

$$|BC| = \sqrt{(2-(-2))^2 + (2-(-3))^2} = \sqrt{(4)^2 + (5)^2} = \sqrt{16+25} = \sqrt{41}$$

$$|CA| = \sqrt{(3-2)^2 + (1-2)^2} = \sqrt{(1)^2 + (-1)^2}$$

$$= \sqrt{1+1} = \sqrt{2}$$

 $\therefore |AB| = |BC| \implies A, B \& C$ are vertices of an isosceles triangle.

(iii) Given:
$$A(5,2)$$
, $B(-2,3)$ & $C(-3,-4)$ and $D(4,-5)$

$$|AB| = \sqrt{(-2-5)^2 + (3-2)^2} = \sqrt{(-7)^2 + (1)^2}$$

$$= \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$$

$$|BC| = \sqrt{(-3+2)^2 + (-4-3)^2} = \sqrt{(-1)^2 + (-7)^2}$$

$$= \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$$

$$|CD| = \sqrt{(4+3)^2 + (-5+4)^2} = \sqrt{(7)^2 + (-1)^2}$$

$$= \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$$

$$|DA| = \sqrt{(5-4)^2 + (2+5)^2} = \sqrt{(1)^2 + (7)^2}$$

$$= \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$$

 $\therefore |AB| = |CD|$ and $|BC| = |DA| \Rightarrow A, B, C$ and D are vertices of parallelogram.

R

Now
$$|AC| = \sqrt{(-3-5)^2 + (-4-2)^2} = \sqrt{(-8)^2 + (-6)^2}$$

 $= \sqrt{64+36} = \sqrt{100} = 10$
 $|BD| = \sqrt{(4+2)^2 + (-5-3)^2} = \sqrt{(6)^2 + (-8)^2}$
 $= \sqrt{36+64} = \sqrt{100} = 10$

Since all sides are equals and also both diagonals are equal therefore A, B, C, D are vertices of a square.

Question #5

The midpoints of the sides of a triangle are (1,-1), (-4,-3) and (-1,1). Find coordinates of the vertices of the triangle.

Solution

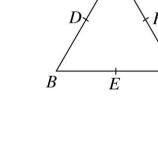
Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are vertices of triangle ABC, and let D(1,-1), E(-4,-3) and F(-1,1) are midpoints of sides AB, BC and CA respectively.

Then
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = (1, -1)$$

$$\Rightarrow x_1 + x_2 = 2 \dots \text{ (i) and } y_1 + y_2 = -2 \dots \text{ (ii)}$$

$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right) = (-4, -3)$$

$$\Rightarrow x_2 + x_3 = -8 \dots \text{ (iii) and } y_2 + y_3 = -6 \dots \text{ (iv)}$$



$$\Rightarrow x_2 + x_3 = -8... \text{ (iii) and } y_2 + y_3 = -6... \text{ (iv)}$$

$$\left(\frac{x_3 + x_1}{2}, \frac{y_3 + y_1}{2}\right) = (-1,1)$$

$$\Rightarrow x_1 + x_3 = -2... \text{ (v), and } y_1 + y_3 = 2... \text{ (vi)}$$

$$x_1 + x_2 = 2$$

 $x_2 + x_3 = -8$... (vii)
 $x_1 - x_3 = 10$

Adding (v) and (vii)

$$x_1 + x_3 = -2$$

$$x_1 - x_3 = 10$$

$$2x_1 = 8 \implies x_1 = 4$$

Putting value of x_1 in (i)

$$4 + x_2 = 2$$

$$\Rightarrow x_2 = 2 - 4 \Rightarrow \boxed{x_2 = -2}$$

Putting value of x_1 in (v)

$$4 + x_3 = -2$$

$$\Rightarrow x_3 = -2 - 4 \Rightarrow x_3 = -6$$

Subtracting (ii) and (iv)

$$y_1 + y_2 = -2$$

 $y_2 + y_3 = -6$... (viii)
 $y_1 - y_3 = 4$

Adding (vi) and (viii)

$$y_1 + y_3 = 2$$

$$y_1 - y_3 = 4$$

$$2y_1 = 6 \Rightarrow y_1 = 3$$

Putting value of y_1 in (ii)

$$3 + y_2 = -2$$

$$\Rightarrow y_2 = -2 - 3 \Rightarrow y_2 = -5$$

Putting value of y_1 in (v)

$$3 + y_3 = 2$$

$$\Rightarrow y_3 = 2 - 3 \Rightarrow y_3 = -1$$

Hence vertices of triangle are (4,3),(-2,-5) & (-6,-1).

Question # 6

Find h such that the point $A(\sqrt{3},-1)$, B(0,2) and C(h,-2) are vertices of a right angle with right angle at the vertex A.

Solution

Since ABC is a right triangle therefore by Pythagoras theorem

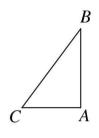
$$|AB|^{2} + |CA|^{2} = |BC|^{2}$$

$$\Rightarrow \left[\left(0 - \sqrt{3} \right)^{2} + \left(2 + 1 \right)^{2} \right] + \left[\left(\sqrt{3} - h \right)^{2} + \left(-1 + 2 \right)^{2} \right] = (h - 0)^{2} + (-2 - 2)^{2}$$

$$\Rightarrow \left[3 + 9 \right] + \left[3 - 2\sqrt{3}h + h^{2} + 1 \right] = h^{2} + 16$$

$$\Rightarrow 12 + 4 - 2\sqrt{3}h + h^{2} = h^{2} + 16$$

$$\Rightarrow -2\sqrt{3}h = h^{2} + 16 - 12 - 4 - h^{2} \Rightarrow -2\sqrt{3}h = 0 \Rightarrow \boxed{h = 0}.$$



Ouestion #7

Find h such that A(-1,h), B(3,2) and C(7,3) are collinear.

Solution

Points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear if $\begin{vmatrix} x_1 & y_1 & 1 \end{vmatrix}$

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Since given points are collinear therefore

$$\begin{vmatrix} -1 & h & 1 \\ 3 & 2 & 1 \\ 7 & 3 & 1 \end{vmatrix} = 0$$

$$\Rightarrow -1(2-3) - h(3-7) + 1(9-14) = 0 \Rightarrow -1(-1) - h(-4) + 1(-5) = 0$$

$$\Rightarrow 1 + 4h - 5 = 0 \Rightarrow 4h - 4 = 0 \Rightarrow 4h = 4 \Rightarrow \boxed{h=1}$$

Question #8

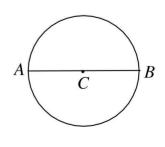
The points A(-5,-2) and B(5,-4) are end of a diameter of a circle. Find the centre and radius of the circle.

Solution

The centre of the circle is mid point of AB

i.e. centre 'C' =
$$\left(\frac{-5+5}{2}, \frac{-2-4}{2}\right) = \left(\frac{0}{2}, \frac{-6}{2}\right) = (0, -3)$$

Now radius = $|AC|$
= $\sqrt{(0+5)^2 + (-3+2)^2}$
= $\sqrt{25+1}$ = $\sqrt{26}$



Question #9

Find h such that the points A(h,1), B(2,7) and C(-6,-7) are vertices of a right triangle with right angle at the vertex A

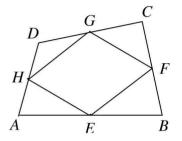
Solution

Do yourself as Question # 6

Hint: you will get a equation $h^2 + 4h - 60 = 0$ Solve this quadratic equation to get two values of h.

Ouestion # 10

A quadrilateral has the points A(9,3), B(-7,7), C(-3,-7) and D(-5,5) as its vertices. Find the midpoints of its sides. Show that the figure formed by joining the midpoints consecutively is a parallelogram.



Solution

Given: A(9,3), B(-7,7), C(-3,-7) and D(5,-5)

Let E, F, G and H be the mid-points of sides of quadrilateral

Coordinate of
$$E = \left(\frac{9-7}{2}, \frac{3+7}{2}\right) = \left(\frac{2}{2}, \frac{10}{2}\right) = (1,5)$$

Coordinate of
$$F = \left(\frac{-7-3}{2}, \frac{7-7}{2}\right) = \left(\frac{-10}{2}, \frac{0}{2}\right) = (-5,0)$$

Coordinate of
$$G = \left(\frac{-3+5}{2}, \frac{-7-5}{2}\right) = \left(\frac{2}{2}, \frac{-12}{2}\right) = (1, -6)$$

Coordinate of
$$H = \left(\frac{9+5}{2}, \frac{3-5}{2}\right) = \left(\frac{14}{2}, \frac{-2}{2}\right) = (7, -1)$$

Now
$$|EF| = \sqrt{(-5-1)^2 + (0-5)^2} = \sqrt{36+25} = \sqrt{61}$$

 $|FG| = \sqrt{(1+5)^2 + (-6-0)^2} = \sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$
 $|GH| = \sqrt{(7-1)^2 + (-1+6)^2} = \sqrt{36+25} = \sqrt{61}$
 $|HE| = \sqrt{(1-7)^2 + (5+1)^2} = \sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$

Since
$$|EF| = |GH|$$
 and $|FG| = |HE|$

Therefore *EFGH* is a parallelogram.

Question #11

Find h such that the quadrilateral with vertices A(-3,0), B(1,-2,)C(5,0) and D(1,h) is parallelogram. Is it a square?

Solution

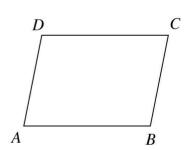
Given:
$$A(-3,0)$$
, $B(1,-2)$, $C(5,0)$, $D(1,h)$

Quadrilateral ABCD is a parallelogram if

$$|AB| = |CD|$$
 & $|BC| = |AD|$

when
$$|AB| = |CD|$$

$$\Rightarrow \sqrt{(1+3)^2 + (-2-0)^2} = \sqrt{(1-5)^2 + (h-0)^2}$$



$$\Rightarrow \sqrt{16+4} = \sqrt{16+h^2} \Rightarrow \sqrt{20} = \sqrt{16+h^2}$$

On squaring

$$20 = 16 + h^2$$
 $\Rightarrow h^2 = 20 - 16$ $\Rightarrow h^2 = 4$ $\Rightarrow h = \pm 2$

When h = 2, then D(1,h) = D(1,2)

Then
$$|AB| = \sqrt{(1+3)^2 + (-2-0)^2} = \sqrt{16+4} = \sqrt{20}$$

 $|BC| = \sqrt{(5-1)^2 + (0+2)^2} = \sqrt{16+4} = \sqrt{20}$
 $|CA| = \sqrt{(1-5)^2 + (2-0)^2} = \sqrt{16+4} = \sqrt{20}$
 $|DA| = \sqrt{(-3-1)^2 + (-0-2)^2} = \sqrt{16+4} = \sqrt{20}$

Now for diagonals

$$|AC| = \sqrt{(5+3)^2 + (0-0)^2} = \sqrt{64+0} = 8$$

 $|BD| = \sqrt{(1-1)^2 + (2+2)^2} = \sqrt{0+16} = 4$

Since all sides are equal but diagonals $|AC| \neq |BD|$

Therefore ABCD is not a square.

Now when h = -2, then D(1,h) = D(1,-2) but we also have B(1,-2)

i.e. B and D represents the same point, which can not happened in quadrilateral so we can not take h = -2.

Question # 12

If two vertices of an equilateral triangle are A(-3,0) and B(3,0), find the third vertex. How many of these triangles are possible?

Solution

Given:
$$A(-3,0)$$
, $B(3,0)$

Let C(x, y) be a third vertex of an equilateral triangle ABC.

Then
$$|AB| = |BC| = |CA|$$

$$\Rightarrow \sqrt{(3+3)^2 + (0-0)^2} = \sqrt{(x-3)^2 + (y-0)^2} = \sqrt{(x+3)^2 + (y-0)^2}$$

$$\Rightarrow \sqrt{36+0} = \sqrt{x^2-6x+9+y^2} = \sqrt{x^2+6x+9+y^2}$$

On squaring

$$36 = x^2 + y^2 - 6x + 9 = x^2 + y^2 + 6x + 9$$
(i)

From equation (i)

$$x^{2} + y^{2} - 6x + 9 = x^{2} + y^{2} + 6x + 9$$

$$\Rightarrow x^{2} + y^{2} - 6x + 9 - x^{2} - y^{2} - 6x - 9 = 0$$

$$\Rightarrow -12x = 0 \Rightarrow x = 0$$

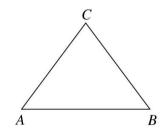
Again from equation (i)

$$36 = x^2 + y^2 - 6x + 9$$

$$\Rightarrow 36 = (0)^2 + y^2 - 6(0) + 9$$
 : $x = 0$

$$\Rightarrow 36 = y^2 + 9 \Rightarrow y^2 = 36 - 9 = 27 \Rightarrow y = \pm 3\sqrt{3}$$

so coordinate of C is $(0,3\sqrt{3})$ or $(0,-3\sqrt{3})$.



And hence two triangle can be formed with vertices A(-3,0), B(3,0), $C(0,3\sqrt{3})$ and A(-3,0), B(3,0), $C(0,-3\sqrt{3})$.

Question #13

Find the points trisecting the join of A(-1,4) and B(6,2).

Solution

Given: A(-1,4), B(6,2)

Let C and D be points trisecting A and B

Then AC:CB = 1:2

So coordinate of
$$C = \left(\frac{1(6) + 2(-1)}{1 + 2}, \frac{1(2) + 2(4)}{1 + 2}\right)$$

$$= \left(\frac{6-2}{3}, \frac{2+8}{3}\right) = \left(\frac{4}{3}, \frac{10}{3}\right)$$

Also AD:DB = 2:1

So coordinate of
$$D = \left(\frac{2(6)+1(-1)}{2+1}, \frac{2(2)+1(4)}{2+1}\right)$$

$$= \left(\frac{12-1}{3}, \frac{4+4}{3}\right) = \left(\frac{11}{3}, \frac{8}{3}\right)$$

Hence $\left(\frac{4}{3}, \frac{10}{3}\right)$ and $\left(\frac{11}{3}, \frac{8}{3}\right)$ are points trisecting A and B.

Question #14

Find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3). *Solution*

Given:
$$A(-5,8)$$
, $B(5,3)$

Let C(x, y) be a required point

$$AC:CB=3:2$$

$$\therefore \text{ Co-ordinate of } C = \left(\frac{3(5) + 2(-5)}{3 + 2}, \frac{3(3) + 2(8)}{3 + 2}\right)$$
$$= \left(\frac{15 - 10}{5}, \frac{9 + 16}{5}\right) = \left(\frac{5}{5}, \frac{25}{5}\right) = (1, 5)$$

Question # 15

Find the point P on the joint of A(1,4) and B(5,6) that is twice as far from A as B is from A and lies

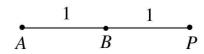
(i) on the same side of A as B does.

(ii) on the opposite side of A as B does.

Solution

Given: A(1,4), B(5,6)

(i) Let P(x, y) be required point, then



$$AB:AP = 1:2$$

$$\Rightarrow AB:BP = 1:1$$
 i.e. B is midpoint of AP

Then
$$B(5,6) = \left(\frac{1+x}{2}, \frac{4+y}{2}\right)$$

 $\Rightarrow 5 = \frac{1+x}{2}$ and $6 = \frac{4+y}{2}$
 $\Rightarrow 10 = 1+x$ and $12 = 4+y$
 $\Rightarrow x = 10-1$, $y = 12-4$
 $= 9$ $= 8$

Hence P(9,8) is required point.

(ii) Since
$$PA:AB = 2:1$$

$$\Rightarrow A(1,4) = \left(\frac{2(5)+1(x)}{2+1}, \frac{2(6)+1(y)}{2+1}\right)$$

$$= \left(\frac{10+x}{3}, \frac{12+y}{3}\right)$$

$$\Rightarrow 1 = \frac{10+x}{3} \quad \text{and} \quad 4 = \frac{12+y}{3}$$

$$\Rightarrow 3 = 10+x \quad \text{and} \quad 12 = 12+y$$

$$\Rightarrow x = 3-10 \quad \text{and} \quad y = 12-12$$

$$= -7 \quad = 0$$

Hence P(-7,0) is required point.

Question #16

Find the point which is equidistant from the points A(5,3), B(2,-2) and C(4,2).

What is the radius of the circumcircle of the $\triangle ABC$?

Solution

Given:
$$A(5,3)$$
, $B(-2,2)$ and $C(4,2)$

Let D(x, y) be a point equidistance from A, B and C then

$$\left| \overline{DA} \right| = \left| \overline{DB} \right| = \left| \overline{DC} \right|$$

$$\Rightarrow \left| \overline{DA} \right|^2 = \left| \overline{DB} \right|^2 = \left| \overline{DC} \right|^2$$

$$\Rightarrow (x-5)^2 + (y-3)^2 = (x+2)^2 + (y-2)^2 = (x-4)^2 + (y-2)^2 \dots \dots (i)$$

From eq. (i)

$$(x-5)^{2} + (y-3)^{2} = (x+2)^{2} + (y-2)^{2}$$

$$\Rightarrow x^{2} - 10x + 25 + y^{2} - 6y + 9 = x^{2} + 4x + 4 + y^{2} - 4y + 4$$

$$\Rightarrow x^{2} - 10x + 25 + y^{2} - 6y + 9 - x^{2} - 4x - 4 - y^{2} + 4y - 4 = 0$$

$$\Rightarrow -14x - 2y + 26 = 0 \Rightarrow 7x + y - 13 = 0 \dots (ii)$$

Again from equation (i)

$$(x+2)^2 + (y-2)^2 = (x-4)^2 + (y-2)^2$$

$$\Rightarrow x^{2} + 4x + 4 + y^{2} - 4y + 4 = x^{2} - 8x + 16 + y^{2} - 4y + 4$$

\Rightarrow 12x - 12 = 0 \Rightarrow 12x = 12 \Rightarrow x = 1

Put x = 1 in eq. (ii)

$$7(1) + y - 13 = 0$$
 $\Rightarrow y - 6 = 0$ $\Rightarrow y = 6$

Hence (1,6) is required point.

Now radius of circumcircle =
$$|\overline{DA}|$$

= $\sqrt{(5-1)^2 + (3-6)^2}$ = $\sqrt{16+9}$ = $\sqrt{25}$ = 5 units

Intersection of Median

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are vertices of triangle.

Intersection of median is called centroid of triangle and can be determined as

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

See proof at page 184

Centre of In-Circle (In-Centre)

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are vertices of triangle.

And
$$|AB| = c$$
, $|BC| = a$, $|CA| = b$

Then in-centre of triangle =
$$\left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$

See proof at page 184

Ouestion #17

The points (4,-2), (-2,4) and (5,5) are the vertices of a triangle. Find in-centre of the triangle.

Solution

Let
$$A(4,-2)$$
, $B(-2,4)$, $C(5,5)$ are vertices of triangle then

$$a = |BC| = \sqrt{(5+2)^2 + (5-4)^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$$

$$b = |CA| = \sqrt{(4-5)^2 + (-2-5)^2} = \sqrt{1+49} = \sqrt{50} = 5\sqrt{2}$$

$$c = |AB| = \sqrt{(-2-4)^2 + (4+2)^2} = \sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$$

Now

In-centre =
$$\left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$

= $\left(\frac{5\sqrt{2}(4) + 5\sqrt{2}(-2) + 6\sqrt{2}(5)}{5\sqrt{2} + 5\sqrt{2} + 6\sqrt{2}}, \frac{5\sqrt{2}(-2) + 5\sqrt{2}(4) + 6\sqrt{2}(5)}{5\sqrt{2} + 5\sqrt{2} + 6\sqrt{2}}\right)$
= $\left(\frac{20\sqrt{2} - 10\sqrt{2} + 30\sqrt{2}}{16\sqrt{2}}, \frac{-10\sqrt{2} + 20\sqrt{2} + 30\sqrt{2}}{16\sqrt{2}}\right)$
= $\left(\frac{40\sqrt{2}}{16\sqrt{2}}, \frac{40\sqrt{2}}{16\sqrt{2}}\right)$ = $\left(\frac{5}{2}, \frac{5}{2}\right)$

Question #18

Find the points that divide the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ into four equal parts.

Solution

Given:
$$A(x_1, y_1)$$
, $B(x_2, y_2)$

Let C, D and E are points dividing AB into four equal parts.

$$\therefore AC:CB=1:3$$

$$\Rightarrow$$
 Co-ordinates of $C = \left(\frac{1(x_2) + 3(x_1)}{1 + 3}, \frac{1(y_2) + 3(y_1)}{1 + 3}\right) = \left(\frac{3x_1 + x_2}{4}, \frac{3y_1 + y_2}{4}\right)$

Now
$$AD:DB = 2:2$$

= 1:1 i.e.
$$D$$
 is midpoint of AB .

$$\Rightarrow$$
 Co-ordinates of $D = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Now
$$AE : EB = 3:1$$

$$\Rightarrow$$
 Co-ordinates of $E = \left(\frac{3(x_2) + 1(x_1)}{3 + 1}, \frac{3(y_2) + 1(y_1)}{3 + 1}\right) = \left(\frac{x_1 + 3x_2}{4}, \frac{y_1 + 3y_2}{4}\right)$

Hence
$$\left(\frac{3x_1+x_2}{4}, \frac{3y_1+y_2}{4}\right)$$
, $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ and $\left(\frac{x_1+3x_2}{4}, \frac{y_1+3y_2}{4}\right)$ are the points dividing AB into four equal parts.