Exercise 4.4 (Solutions) Page 223

Calculus and Analytic Geometry, MATHEMATICS 12

Point of intersection of lines

Let $l_1: a_1x + b_1y + c_1 = 0$

 l_2 : $a_2x + b_2y + c_2 = 0$ be non-parallel lines.

Let $P(x_1, y_1)$ be the point of intersection of l_1 and l_2 . Then

$$a_1x_1 + b_1y_1 + c_1 = 0$$
.....(i)
 $a_2x_1 + b_2y_1 + c_2 = 0$(ii)

Solving (i) and (ii) simultaneously, we have

$$\frac{x_1}{b_1 c_2 - b_2 c_1} = \frac{-y_1}{a_1 c_2 - a_2 c_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

$$\Rightarrow \frac{x_1}{b_1 c_2 - b_2 c_1} = \frac{1}{a_1 b_2 - a_2 b_1} \text{ and } \frac{-y_1}{a_1 c_2 - a_2 c_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

$$\Rightarrow x_1 = \frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1} \text{ and } y_1 = -\frac{a_1 c_2 - a_2 c_1}{a_1 b_2 - a_2 b_1}$$

Hence $\left(\frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1}, -\frac{a_1c_2-a_2c_1}{a_1b_2-a_2b_1}\right)$ is the point of intersection of l_1 and l_2 .

Equation of line passing through the point of intersection.

Let $l_1: a_1x + b_1y + c_1 = 0$

 $l_2: \ a_2x + b_2y + c_2 = 0$

Then equation of line passing through the point of intersection of l_1 and l_2 is $l_1 + k l_2 = 0$, where k is constant.

i.e.
$$a_1x + b_1y + c_{11} + k(a_2x + b_2y + c_2) = 0$$

Question #1

Find the point of intersection of the lines

(i)
$$x-2y+1=0$$
 $2x-y+2=0$ (ii) $3x+y+12=0$ $x+2y-1=0$

(iii)
$$x+4y-12=0$$
 $x-3y+3=0$

Solution

(i)
$$l_1: x-2y+1=0$$

$$l_2: 2x-y+2=0$$
Slope of $l_1 = m_1 = -\frac{1}{-2} = \frac{1}{2}$
Slope of $l_2 = m_2 = -\frac{2}{-1} = 2$

 $m_1 \neq m_2$, therefore lines are intersecting.

Now if (x, y) is the point of intersection of l_1 and l_2 then

$$\frac{x}{(-2)(2) - (-1)(1)} = \frac{-y}{(1)(2) - (2)(1)} = \frac{1}{(1)(-1) - (2)(-2)}$$

$$\Rightarrow \frac{x}{-4 + 1} = \frac{-y}{2 - 2} = \frac{1}{-1 + 4}$$

$$\Rightarrow \frac{x}{-3} = \frac{-y}{0} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{-3} = \frac{1}{3} \quad \text{and} \quad \frac{-y}{0} = \frac{1}{3}$$

$$\Rightarrow x = \frac{-3}{3} \quad \text{and} \quad y = -\frac{0}{3}$$

$$\Rightarrow x = -1 \quad \text{and} \quad y = 0$$

Hence (-1,0) is the point of intersection.

(ii)
$$l_1: 3x + y + 12 = 0$$

 $l_2: x + 2y - 1 = 0$
Slope of $l_1 = m_1 = -\frac{3}{1} = -3$
Slope of $l_2 = m_2 = -\frac{1}{2}$

 $m_1 \neq m_2$, therefore lines are intersecting.

Now if (x, y) is the point of intersection of l_1 and l_2 then

$$\frac{x}{-1-24} = \frac{-y}{-3-12} = \frac{1}{6-1}$$

$$\Rightarrow \frac{x}{-25} = \frac{-y}{-15} = \frac{1}{5}$$

$$\Rightarrow \frac{x}{-25} = \frac{1}{5} \text{ and } \frac{-y}{-15} = \frac{1}{5}$$

$$\Rightarrow x = \frac{-25}{5} = -5 \text{ and } y = \frac{15}{5} = 3$$

Hence (-5,3) is the point of intersection.

(iii) Do yourself as above.

Question # 2

Find an equation of the line through

- (i) the point (2,-9) and the intersection of the lines 2x+5y-8=0 and 3x-4y-6=0
- (ii) the intersection of the lines x-y-4=0 7x+y+20=0 6x+y-14=0
- (a) Parallel (ii) Perpendicular to the line 6x+y-14=0
- (iii) through the intersection of the lines x+2y+3=0, 3x+4y+7=0

And making equal intercepts on the axes.

Solution

(i) Let
$$l_1: 2x+5y-8=0$$

 $l_2: 3x-4y-6=0$

Equation of line passing through point of intersection of l_1 and l_2 is

$$2x+5y-8+k(3x-4y-6)=0...$$
 (i)

Since
$$(2,-9)$$
 lies on (i) therefore put $x=2$ and $y=-9$ in (i)

$$2(2)+5(-9)-8+k(3(2)-4(-9)-6)=0$$

$$\Rightarrow 4-45-8+k(6+36-6)=0$$

$$\Rightarrow$$
 $-49 + 36k = 0$

$$\Rightarrow 36k = 49$$
 $\Rightarrow k = \frac{49}{36}$

Putting value of k in (i)

$$2x+5y-8+\frac{49}{36}(3x-4y-6)=0$$

$$\Rightarrow$$
 72x+180y-288+49(3x-4y-6)=0 ×ing by 36

$$\Rightarrow$$
 72x+180y-288+147x-196y-294=0

$$\Rightarrow$$
 219x-16y-582=0 is the required equation.

(ii) Let
$$l_1: x-y-4=0$$

 $l_2: 7x+y+20=0$

$$l_3: 6x + y - 14 = 0$$

Let l_4 be a line passing through point of intersection of l_1 and l_2 , then

$$l_4: l_1 + k l_2 = 0$$

$$\Rightarrow x - y - 4 + k (7x + y + 20) = 0... (i)$$

$$\Rightarrow (1 + 7k)x + (-1 + k)y + (-4 + 20k) = 0$$

Slope of
$$l_4 = m_1 = -\frac{1+7k}{-1+k}$$

Slope of
$$l_3 = m_2 = -\frac{6}{1} = -6$$

(a) If l_3 and l_4 are parallel then

$$m_1 = m_2$$

$$\Rightarrow -\frac{1+7k}{-1+k} = -6$$

$$\Rightarrow 1+7k = 6(-1+k) \Rightarrow 1+7k = -6+6k$$

$$\Rightarrow 7k-6k = -6-1 \Rightarrow k = -7$$

Putting value of k in (i)

$$x-y-4-7(7x+y+20)=0$$

$$\Rightarrow x-y-4-49x-7y-140=0$$

$$\Rightarrow -48x - 8y - 144 = 0$$
$$\Rightarrow 6x + y + 18 = 0$$

is the required equation

(b) If l_3 and l_4 are \perp then

$$m_1 m_2 = -1$$

$$\Rightarrow \left(-\frac{1+7k}{-1+k} \right) (-6) = -1$$

$$\Rightarrow 6(1+7k) = -(-1+k) \qquad \Rightarrow 6+42k = 1-k$$

$$\Rightarrow 42k+k=1-6 \qquad \Rightarrow 43k=-5 \qquad \Rightarrow k=-\frac{5}{43}$$

Putting in (i) we have

$$x-y-4-\frac{5}{43}(7x+y+20)=0$$

$$\Rightarrow 43x-43y-172-5(7x+y+20)=0$$

$$\Rightarrow 43x-43y-172-35x-5y-100=0$$

$$\Rightarrow 8x-48y-272=0$$

$$\Rightarrow x-6y-34=0 \text{ is the required equation.}$$

(iii) Suppose
$$l_1: x+2y+3=0$$

 $l_2: 3x+4y+7=0$

Equation of line passing through the intersection of l_1 and l_2 is given by:

$$x + 2y + 3 + k(3x + 4y + 7) = 0 \dots (i)$$

$$\Rightarrow (1+3k)x + (2+4k)y + (3+7k) = 0$$

$$\Rightarrow (1+3k)x + (2+4k)y = -(3+7k)$$

$$\Rightarrow \frac{(1+3k)x}{-(3+7k)} + \frac{(2+4k)y}{-(3+7k)} = 1$$

$$\Rightarrow \frac{x}{-(3+7k)} + \frac{y}{-(3+7k)} = 1$$

Which is two-intercept form of equation of line with

$$x$$
-intercept = $\frac{-(3+7k)}{(1+3k)}$ and y -intercept = $\frac{-(3+7k)}{(2+4k)}$

We have given

$$x-intercept = y-intercept$$

$$\Rightarrow \frac{-(3+7k)}{(1+3k)} = \frac{-(3+7k)}{(2+4k)}$$

$$\Rightarrow \frac{1}{(1+3k)} = \frac{1}{(2+4k)} \Rightarrow (2+4k) = (1+3k)$$

$$\Rightarrow 4k-3k = 1-2 \Rightarrow k = -1$$

Putting value of k in (i)

$$x+2y+3-1(3x+4y+7) = 0$$

$$\Rightarrow x+2y+3-3x-4y-7 = 0 \Rightarrow -2x-2y-4 = 0$$

$$\Rightarrow x+y+2 = 0$$
is the required equation.

Find an equation of the line through the intersection of 16x-10y-33=0; 12x+14y+29=0 and the intersection of x-y+4=0; x-7y+2=0

Solution

Let
$$l_1: 16x-10y-33=0$$

 $l_2: 12x+14y+29=0$
 $l_3: x-y+4=0$
 $l_4: x-7y+2=0$

For point of intersection of l_1 and l_2

$$\frac{x}{-290 + 462} = \frac{-y}{464 + 396} = \frac{1}{224 + 120}$$

$$\Rightarrow \frac{x}{172} = \frac{-y}{860} = \frac{1}{334}$$

$$\Rightarrow \frac{x}{172} = \frac{1}{334} \quad \text{and} \quad \frac{-y}{860} = \frac{1}{334}$$

$$\Rightarrow x = \frac{172}{334} = \frac{1}{2} \quad \text{and} \quad y = -\frac{860}{334} = -\frac{5}{2}$$

$$\Rightarrow \left(\frac{1}{2}, -\frac{5}{2}\right) \text{ is a point of intersection of } l_1 \text{ and } l_2.$$

For point of intersection of l_3 and l_4 .

$$\frac{x}{-2+28} = \frac{-y}{2-4} = \frac{1}{-7+1}$$

$$\Rightarrow \frac{x}{26} = \frac{-y}{-2} = \frac{1}{-6}$$

$$\Rightarrow \frac{x}{26} = \frac{1}{-6} \quad \text{and} \quad \frac{-y}{-2} = \frac{1}{-6}$$

$$\Rightarrow x = \frac{26}{-6} = -\frac{13}{3} \quad \text{and} \quad y = \frac{2}{-6} = -\frac{1}{3}$$

$$\Rightarrow \left(-\frac{13}{3}, -\frac{1}{3}\right) \text{ is a point of intersection of } l_3 \text{ and } l_4.$$

Now equation of line passing through $\left(\frac{1}{2}, -\frac{5}{2}\right)$ and $\left(-\frac{13}{3}, -\frac{1}{3}\right)$ $y + \frac{5}{2} = \frac{-\frac{1}{3} + \frac{5}{2}}{-\frac{13}{2} - \frac{1}{2}} \left(x - \frac{1}{2}\right)$

$$\Rightarrow y + \frac{5}{2} = \frac{\frac{13}{6}}{\frac{-29}{6}} \left(x - \frac{1}{2} \right) \Rightarrow y + \frac{5}{2} = -\frac{13}{29} \left(x - \frac{1}{2} \right)$$

$$\Rightarrow 29y + \frac{145}{2} = -13x + \frac{13}{2} \Rightarrow 13x - \frac{13}{2} + 29y + \frac{145}{2} = 0$$

$$\Rightarrow 13x + 29y + 66 = 0$$

is the required equation.

Three Concurrent Lines

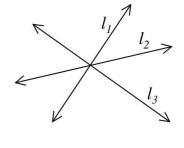
Suppose
$$l_1: a_1x + b_1y + c_1 = 0$$

 $l_2: a_2x + b_2y + c_2 = 0$
 $l_3: a_3x + b_3y + c_3 = 0$

If l_1 , l_2 and l_3 are concurrent (intersect at one point) then

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

See proof on book at page 208



Question #4

Find the condition that the lines $y = m_1x + c_1$; $y = m_2x + c_2$ and $y = m_3x + c_3$ are concurrent.

Solution

Assume that

$$l_{1}: y = m_{1}x + c_{1}$$

$$\Rightarrow m_{1}x - y + c_{1} = 0$$

$$l_{2}: y = m_{2}x + c_{2}$$

$$\Rightarrow m_{2}x - y + c_{2} = 0$$

$$l_{3}: y = m_{3}x + c_{3}$$

$$\Rightarrow m_{3}x - y + c_{3} = 0$$

If l_1 , l_2 and l_3 are concurrent then

$$\begin{vmatrix} m_1 & -1 & c_1 \\ m_2 & -1 & c_2 \\ m_3 & -1 & c_3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} m_1 & -1 & c_1 \\ m_2 - m_1 & 0 & c_2 - c_1 \\ m_3 - m_1 & 0 & c_3 - c_1 \end{vmatrix} = 0 \quad \text{by} \quad \begin{matrix} R_2 - R_1 \\ R_3 - R_1 \end{matrix}$$

Expanding by C_2

$$-(-1)[(m_2 - m_1)(c_3 - c_1) - (m_3 - m_1)(c_2 - c_1)] + 0 - 0 = 0$$

$$\Rightarrow [(m_2 - m_1)(c_3 - c_1) - (m_3 - m_1)(c_2 - c_1)] = 0$$

$$\Rightarrow (m_2 - m_1)(c_3 - c_1) = (m_3 - m_1)(c_2 - c_1)$$

is the required condition.

Determine the value of P such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0 meet at a point.

Solution

Let
$$l_1: 2x-3y-1=0$$

 $l_2: 3x-y-5=0$
 $l_3: 3x+py+8=0$

Since l_1 , l_2 and l_3 meets at a point i.e. concurrent therefore

$$\begin{vmatrix} 2 & -3 & -1 \\ 3 & -1 & -5 \\ 3 & p & 8 \end{vmatrix} = 0$$

$$\Rightarrow 2(-8+5p) + 3(24+15) - 1(3p+3) = 0$$

$$\Rightarrow -16+10p+72+45-3p-3=0$$

$$\Rightarrow 7p+98=0 \Rightarrow 7p=-98$$

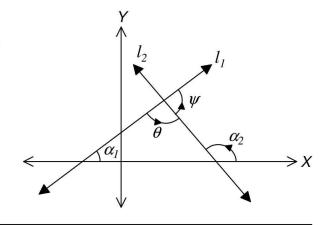
$$\Rightarrow p = -\frac{98}{7} \Rightarrow p = -14$$

Angle between lines

Let l_1 and l_2 be two lines. If α_1 and α_2 be inclinations and m_1 and m_2 be slopes of lines l_1 and l_2 respectively, Let θ be a angle from line l_1 to l_2 then θ is given by

$$\tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

See proof on book at page 219



Question #6

Show that the lines 4x-3y-8=0, 3x-4y-6=0 and x-y-2=0 are concurrent and the third-line bisects the angle formed by the first two lines.

Solution

Let
$$l_1: 4x-3y-8=0$$

 $l_2: 3x-4y-6=0$
 $l_3: x-y-2=0$

To check l_1 , l_2 and l_3 are concurrent, let

$$\begin{vmatrix} 4 & -3 & -8 \\ 3 & -4 & -6 \\ 1 & -1 & -2 \end{vmatrix}$$

$$= 4(8-6) + 3(-6+6) - 8(-3+4)$$

$$= 4(2) + 3(0) - 8(1)$$

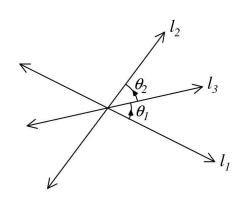
$$= 8 + 0 - 8 = 0$$

Hence l_1 , l_2 and l_3 are concurrent.

Slope of
$$l_1 = m_1 = -\frac{4}{-3} = \frac{4}{3}$$

Slope of $l_2 = m_2 = -\frac{3}{-4} = \frac{3}{4}$
Slope of $l_3 = m_3 = -\frac{1}{-1} = 1$

Now let θ_1 be angle from l_1 to l_3 and θ_2 be a angle from l_3 to l_2 . Then



$$\tan \theta_1 = \frac{m_3 - m_1}{1 + m_3 m_1} = \frac{1 - \frac{4}{3}}{1 + (1)(\frac{4}{3})} = \frac{-\frac{1}{3}}{\frac{7}{3}} = -\frac{1}{7} \dots (i)$$

And

$$\tan \theta_2 = \frac{m_2 - m_3}{1 + m_2 m_3} = \frac{\frac{3}{4} - 1}{1 + \left(\frac{3}{4}\right)(1)} = \frac{-\frac{1}{4}}{\frac{7}{4}} = -\frac{1}{7} \dots (ii)$$

From (i) and (ii)

$$\tan \theta_1 = \tan \theta_2 \implies \theta_1 = \theta_2$$

 $\Rightarrow l_3$ bisect the angle formed by the first two lines.

Question #7

The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5).

Find coordinates of the

(i) centroid (ii) orthocentre Are these three points are collinear?

(iii) circumcentre of the triangle

Solution

Given vertices of triangles are A(-2,3), B(-4,1) and C(3,5).

Centroid of triangle is the intersection of medians and is given by

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$= \left(\frac{-2 - 4 + 3}{3}, \frac{3 + 1 + 5}{3}\right) = \left(\frac{-3}{3}, \frac{9}{3}\right) = (-1,3)$$

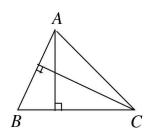
Hence (-1,3) is the centroid of the triangle.

(ii) Orthocentre is the point of intersection of altitudes.

Slope of
$$\overline{AB} = m_1 = \frac{1-3}{-4+2} = \frac{-2}{-2} = 1$$

Slope of $\overline{BC} = m_2 = \frac{5-1}{3+4} = \frac{4}{7}$
Since altitudes are \perp to sides therefore

Slope of altitude on
$$\overline{AB} = -\frac{1}{m_1} = -\frac{1}{1} = -1$$



Slope of altitude on
$$\overline{BC} = -\frac{1}{m_2} = -\frac{1}{\frac{4}{7}} = -\frac{7}{4}$$

Equation of altitude on \overline{AB} with slope -1 from C(3,5)

$$y-5 = -1(x-3)$$

$$\Rightarrow y-5 = -x+3 \Rightarrow x-3+y-5=0$$

$$\Rightarrow x+y-8=0 \dots (i)$$

Now equation of altitude on \overline{BC} with slope $-\frac{7}{4}$ from A(-2,3)

$$y-3 = -\frac{7}{4}(x+2)$$

$$\Rightarrow 4y-12 = -7x-14 \Rightarrow 7x+14+4y-12=0$$

$$\Rightarrow 7x+4y+2=0 \dots (ii)$$

For point of intersection of (i) and (ii)

$$\frac{x}{2+32} = \frac{-y}{2+56} = \frac{1}{4-7}$$

$$\Rightarrow \frac{x}{34} = \frac{-y}{58} = \frac{1}{-3}$$

$$\Rightarrow \frac{x}{34} = \frac{1}{-3} \quad \text{and} \quad \frac{-y}{58} = \frac{1}{-3}$$

$$\Rightarrow x = -\frac{34}{3} \quad \text{and} \quad y = -\frac{58}{-3} = \frac{58}{3}$$

Hence $\left(-\frac{34}{3}, \frac{58}{3}\right)$ is orthocentre of triangle ABC.

(iii) Circumcentre of the triangle is the point of intersection of perpendicular bisector.

Let D and E are midpoints of side \overline{AB} and \overline{BC} respectively.

Then coordinate of
$$D = \left(\frac{-4-2}{2}, \frac{1+3}{2}\right) = \left(\frac{-6}{2}, \frac{4}{2}\right) = (-3, 2)$$

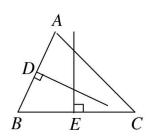
Coordinate of
$$E = \left(\frac{-4+3}{2}, \frac{1+5}{2}\right) = \left(\frac{-1}{2}, \frac{6}{2}\right) = \left(-\frac{1}{2}, 3\right)$$

Slope of
$$\overline{AB} = m_1 = \frac{1-3}{-4+2} = \frac{-2}{-2} = 1$$

Slope of
$$\overline{BC} = m_2 = \frac{5-1}{3+4} = \frac{4}{7}$$

Slope of
$$\perp$$
 bisector on $\overline{AB} = -\frac{1}{m_1} = -\frac{1}{1} = -1$

Slope of
$$\perp$$
 bisector on $\overline{BC} = -\frac{1}{m_2} = -\frac{1}{4/7} = -\frac{7}{4}$



Now equation of \perp bisector having slope -1 through D(-3,2)

$$y-2=-1(x+3)$$

$$\Rightarrow y-2=-x-3 \Rightarrow x+3+y-2=0$$

$$\Rightarrow x+y+1=0 \dots (iii)$$

Now equation of \perp bisector having slope $-\frac{7}{4}$ through $E\left(-\frac{1}{2},3\right)$

$$y-3 = -\frac{7}{4}\left(x + \frac{1}{2}\right) \implies 4y-12 = -7x - \frac{7}{2}$$

$$\Rightarrow 7x + \frac{7}{2} + 4y-12 = 0 \implies 7x + 4y - \frac{17}{2} = 0$$

$$\Rightarrow 14x + 8y - 17 = 0 \dots (iv)$$

For point of intersection of (iii) and (iv)

$$\frac{x}{-17-8} = \frac{-y}{-17-14} = \frac{1}{8-14}$$

$$\Rightarrow \frac{x}{-25} = \frac{-y}{-31} = \frac{1}{-6}$$

$$\Rightarrow \frac{x}{-25} = \frac{1}{-6} \quad \text{and} \quad \frac{-y}{-31} = \frac{1}{-6}$$

$$\Rightarrow x = \frac{-25}{-6} = \frac{25}{6} \quad \text{and} \quad y = -\frac{31}{6}$$

Hence $\left(\frac{25}{6}, -\frac{31}{6}\right)$ is the circumcentre of the triangle.

Now to check
$$(-1,3)$$
, $\left(-\frac{34}{3}, \frac{58}{3}\right)$ and $\left(\frac{25}{6}, -\frac{31}{6}\right)$ are collinear, let
$$\begin{vmatrix}
-1 & 3 & 1 \\
-34/3 & 58/3 & 1 \\
25/6 & -31/6 & 1
\end{vmatrix}$$

$$= -1\left(\frac{58}{3} + \frac{31}{6}\right) - 3\left(-\frac{34}{3} - \frac{25}{6}\right) + 1\left(\frac{1054}{18} - \frac{1450}{18}\right)$$

$$= -1\left(\frac{49}{2}\right) - 3\left(-\frac{31}{2}\right) + 1(-22)$$

$$= -\frac{49}{2} + \frac{93}{2} - 22 = 0$$

Hence centroid, orthocentre and circumcentre of triangle are collinear.

Question #8

Check whether the lines 4x-3y-8=0; 3x-4y-6=0; x-y-2=0 are concurrent. If so, find the point where they meet.

Solution

Let
$$l_1: 4x-3y-8=0$$

 $l_2: 3x-4y-6=0$
 $l_3: x-y-2=0$

To check lines are concurrent, let

$$\begin{vmatrix} 4 & -3 & -8 \\ 3 & -4 & -6 \\ 1 & -1 & -2 \end{vmatrix}$$

$$= 4(8-6) + 3(-6+6) - 8(-3+4)$$

$$= 4(2) + 3(0) - 8(1) = 8 + 0 - 8 = 0$$

Hence l_1 , l_2 and l_3 are concurrent.

For point of concurrency, we find intersection of l_1 and l_2 (You may choose any two lines)

$$\frac{x}{18-32} = \frac{-y}{-24+24} = \frac{1}{-16+9}$$

$$\Rightarrow \frac{x}{-14} = \frac{-y}{0} = \frac{1}{-7}$$

$$\Rightarrow \frac{x}{-14} = \frac{1}{-7} \quad \text{and} \quad \frac{-y}{0} = \frac{1}{-7}$$

$$\Rightarrow x = \frac{-14}{-7} = 2 \quad \text{and} \quad y = -\frac{0}{-7} = 0$$

Hence (2,0) is the point of concurrency.

Question #9

Find the coordinates of the vertices of the triangle formed by the lines x-2y-6=0; 3x-y+3=0; 2x+y-4=0. Also find measures of the angles of the triangle.

Solution

Let
$$l_1: x-2y-6=0$$

 $l_2: 3x-y+3=0$
 $l_3: 2x+y-4=0$

For point of intersection of l_1 and l_2

$$\frac{x}{-6-6} = \frac{-y}{3+18} = \frac{1}{-1+6}$$

$$\Rightarrow \frac{x}{-12} = \frac{-y}{21} = \frac{1}{5}$$

$$\Rightarrow \frac{x}{-12} = \frac{1}{5} \quad \text{and} \quad \frac{-y}{21} = \frac{1}{5}$$

$$\Rightarrow x = -\frac{12}{5} \quad \text{and} \quad y = -\frac{21}{5}$$

$$\Rightarrow \left(-\frac{12}{5}, -\frac{21}{5}\right)$$
 is the point of intersection of l_1 and l_2 .

For point of intersection of l_2 and l_3 .

$$\frac{x}{4-3} = \frac{-y}{-12-6} = \frac{1}{3+2}$$

$$\Rightarrow \frac{x}{1} = \frac{-y}{-18} = \frac{1}{5}$$

$$\Rightarrow \frac{x}{1} = \frac{1}{5} \quad \text{and} \quad \frac{-y}{-18} = \frac{1}{5}$$

$$\Rightarrow x = \frac{1}{5} \quad \text{and} \quad y = \frac{18}{5}$$

 $\Rightarrow \left(\frac{1}{5}, \frac{18}{5}\right)$ is the point of intersection of l_2 and l_3 .

Now for point of intersection of l_1 and l_2

$$\frac{x}{8+6} = \frac{-y}{-4+12} = \frac{1}{1+4}$$

$$\Rightarrow \frac{x}{14} = \frac{-y}{8} = \frac{1}{5}$$

$$\Rightarrow \frac{x}{14} = \frac{1}{5} \quad \text{and} \quad \frac{-y}{8} = \frac{1}{5}$$

$$\Rightarrow x = \frac{14}{5} \quad \text{and} \quad y = -\frac{8}{5}$$

 $\Rightarrow \left(\frac{14}{5}, -\frac{8}{5}\right)$ is the point of intersection of l_1 and l_3 .

Hence $\left(-\frac{12}{5}, -\frac{21}{5}\right)$, $\left(\frac{1}{5}, \frac{18}{5}\right)$ and $\left(\frac{14}{5}, -\frac{8}{5}\right)$ are vertices of triangle made by l_1 ,

 l_2 and l_3 . We say these vertices as A, B and C respectively.

Slope of side
$$AB = m_1 = \frac{\frac{18}{5} + \frac{21}{5}}{\frac{1}{5} + \frac{12}{5}} = \frac{\frac{39}{5}}{\frac{13}{5}} = \frac{39}{13} = 3$$

Slope of side $BC = m_2 = \frac{-\frac{8}{5} - \frac{18}{5}}{\frac{14}{5} - \frac{1}{5}} = \frac{-\frac{26}{5}}{\frac{13}{5}} = -\frac{26}{13} = -2$

Slope of side $CA = m_3 = \frac{-\frac{21}{5} + \frac{8}{5}}{-\frac{12}{5} - \frac{14}{5}} = \frac{-\frac{13}{5}}{-\frac{26}{5}} = \frac{13}{26} = \frac{1}{2}$

Let α, β and γ denotes angles of triangle at vertices A, B and C respectively. Then

 m_3

$$\tan \alpha = \frac{m_1 - m_3}{1 + m_1 m_3} = \frac{3 - \frac{1}{2}}{1 + (3)(\frac{1}{2})} = \frac{\frac{5}{2}}{\frac{5}{2}} = 1$$

$$\Rightarrow \alpha = \tan^{-1}(1) \Rightarrow \boxed{\alpha = 45^{\circ}}$$
Now
$$\tan \beta = \frac{m_2 - m_1}{1 + m_2 m_1} = \frac{-2 - 3}{1 + (-3)(3)} = \frac{-5}{-5} = 1$$

$$\Rightarrow \beta = \tan^{-1}(1) \Rightarrow \boxed{\beta = 45^{\circ}}$$
Now
$$\tan \gamma = \frac{m_3 - m_2}{1 + m_3 m_2} = \frac{\frac{1}{2} + 2}{1 + (\frac{1}{2})(-2)} = \frac{\frac{5}{2}}{0} = \infty$$

$$\Rightarrow \gamma = \tan^{-1}(\infty) \Rightarrow \boxed{\gamma = 90^{\circ}}.$$

Find the angle measured from the line l_1 to the line l_2 where

(a) l_1 : joining (2,7) and (7,10)

 l_2 : joining (1,1) and (-5,3)

(b) l_1 : joining (3,-1) and (5,7)

 l_2 : joining (2,4) and (-8,2)

(c) l_1 : joining (1,-7) and (6,-4)

 l_2 : joining (-1,2) and (-6,-1)

(d) l_1 : joining (-9,-1) and (3,-5)

 l_2 : joining (2,7) and (-6,-7)

Solution

(a) Since l_1 : joining (2,7) and (7,10)

Therefore slope of
$$l_1 = m_1 = \frac{10 - 7}{7 - 2} = \frac{3}{5}$$

Also l_2 : joining (1,1) and (-5,3)

Therefore slope of
$$l_2 = m_2 = \frac{3-1}{-5-1} = \frac{2}{-6} = -\frac{1}{3}$$

Let θ be a angle from l_1 to l_2 then

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{-\frac{1}{3} - \frac{3}{5}}{1 + \left(\frac{3}{5}\right)\left(-\frac{1}{3}\right)}$$

$$= \frac{-\frac{14}{15}}{1 - \frac{1}{5}} = \frac{-\frac{14}{15}}{\frac{4}{5}} = -\frac{14}{15} \times \frac{5}{4} = -\frac{7}{6}$$

$$\Rightarrow -\tan \theta = \frac{7}{6} \Rightarrow \tan(180 - \theta) = \frac{7}{6}$$

$$\therefore \tan(180 - \theta) = -\tan \theta$$

$$\Rightarrow 180 - \theta = \tan^{-1} \left(\frac{7}{6} \right) = 49.4$$

$$\Rightarrow \theta = 180 - 49.4 \Rightarrow \theta = 130.6^{\circ}$$

Now acute angle between lines = $180-130.6 = 49.4^{\circ}$

- (b) Do yourself as above.
- (c) Since l_1 : joining (1,-7) and (6,-4)Therefore slope of $l_1 = m_1 = \frac{-4+7}{6-1} = \frac{3}{5}$ Also l_2 : joining (-1,2) and (-6,-1)

Therefore slope of
$$l_2 = m_2 = \frac{-1-2}{-6+1} = \frac{-3}{-5} = \frac{3}{5}$$

Let θ be a angle from l_1 to l_2 then

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{\frac{3}{5} - \frac{3}{5}}{1 + \left(\frac{3}{5}\right)\left(\frac{3}{5}\right)} = \frac{0}{1 + \frac{9}{25}} = 0$$

$$\Rightarrow \theta = \tan^{-1}(0) \Rightarrow \theta = 0^{\circ}$$

Also acute angle between lines = 0°

(d) Since l_1 : joining (-9,-1) and (3,-5)Therefore slope of $l_1 = m_1 = \frac{-5+1}{3+9} = \frac{-4}{12} = -\frac{1}{3}$ Also l_2 : joining (2,7) and (-6,-7)Therefore slope of $l_2 = m_2 = \frac{-7-7}{-6-2} = \frac{-14}{-8} = \frac{7}{4}$

Let θ be a angle from l_1 to l_2 then

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{\frac{7}{4} - \left(-\frac{1}{3}\right)}{1 + \left(\frac{7}{4}\right)\left(-\frac{1}{3}\right)}$$

$$= \frac{\frac{7}{4} + \frac{1}{3}}{1 - \frac{7}{12}} = \frac{\frac{25}{12}}{\frac{5}{12}} = \frac{25}{12} \times \frac{12}{5} = 5$$

$$\Rightarrow \theta = \tan^{-1}(5) \Rightarrow \theta = 78.69^{\circ}$$

Also acute angle between lines $= 78.69^{\circ}$

Question # 11

Find the interior angle of the triangle whose vertices are

(a)
$$A(-2,11)$$
, $B(-6,-3)$, $C(4,-9)$

(b)
$$A(6,1)$$
, $B(2,7)$, $C(-6,-7)$

(c)
$$A(2,-5)$$
, $B(-4,-3)$, $C(-1,5)$

(d)
$$A(2,8)$$
, $B(-5,4)$ and $C(4,-9)$

Solution

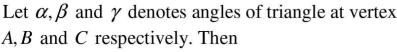
(a) Given vertices A(-2,11), B(-6,-3) and C(4,-9)

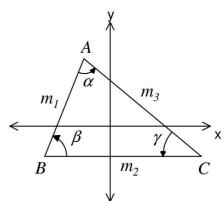
Let m_1, m_2 and m_3 denotes the slopes of side AB, BC and CA respectively. Then

$$m_1 = \frac{-3 - 11}{-6 + 2} = \frac{-14}{-4} = \frac{7}{2}$$

$$m_2 = \frac{-9 + 3}{4 + 6} = \frac{-6}{10} = -\frac{3}{5}$$

$$m_3 = \frac{11 + 9}{-2 - 4} = \frac{20}{-6} = -\frac{10}{3}$$





$$\tan \alpha = \frac{m_3 - m_1}{1 + m_3 m_1} = \frac{-10/3 - 7/2}{1 + (-10/3)(7/2)}$$

$$= \frac{-41/6}{1 - 35/3} = \frac{-41/6}{-32/3} = \frac{41}{6} \times \frac{3}{32} = \frac{41}{64}$$

$$\Rightarrow \alpha = \tan^{-1}\left(\frac{41}{64}\right) \qquad \Rightarrow \boxed{\alpha = 32.64^{\circ}}$$

$$\tan \beta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{7/2 - \left(-\frac{3}{5}\right)}{1 + \left(\frac{7}{2}\right)\left(-\frac{3}{5}\right)}$$

$$= \frac{\frac{7}{2} + \frac{3}{5}}{1 - 21/10} = \frac{41}{10} = -\frac{41}{10} \times \frac{10}{11} = -\frac{41}{11}$$

$$\Rightarrow -\tan \beta = \frac{41}{11} \qquad \Rightarrow \tan(180 - \beta) = \frac{41}{11} \qquad \because \tan(180 - \theta) = -\tan \theta$$

$$\Rightarrow 180 - \beta = \tan^{-1}\left(\frac{41}{11}\right) = 74.98$$

$$\Rightarrow \beta = 180 - 74.98 \qquad \Rightarrow \boxed{\beta = 105.02}$$

$$\tan \gamma = \frac{m_2 - m_3}{1 + m_2 m_3} = \frac{-\frac{3}{5} - \left(-\frac{10}{3}\right)}{1 + \left(-\frac{3}{5}\right)\left(-\frac{10}{3}\right)}$$

$$= \frac{-\frac{3}{5} + \frac{10}{3}}{1 + 2} = \frac{41}{15} = \frac{41}{15} = \frac{41}{45}$$

$$\Rightarrow \gamma = \tan^{-1}\left(\frac{41}{45}\right) \Rightarrow \boxed{\gamma = 42.34^{\circ}}$$

(b) Given vertices A(6,1), B(2,7) and C(-6,-7)

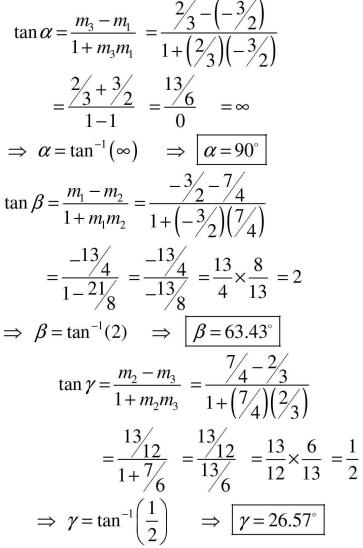
Let m_1, m_2 and m_3 denotes the slopes of side AB, BC and CA respectively. Then

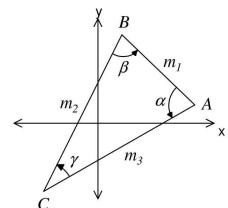
$$m_1 = \frac{7-1}{2-6} = \frac{6}{-4} = -\frac{3}{2}$$

$$m_2 = \frac{-7-7}{-6-2} = \frac{-14}{-8} = \frac{7}{4}$$

$$m_3 = \frac{1+7}{6+6} = \frac{8}{12} = \frac{2}{3}$$

Let α, β and γ denotes angles of triangle at vertex A, B and C respectively. Then





(c)

Do yourself as above.

(d)

Do yourself as above.

Find the interior angles of the quadrilateral whose vertices are A(5,2), B(-2,3), C(-3,-4) and D(4,-5)

Solution Given vertices are A(5,2), B(-2,3), C(-3,-4) and D(4,-5)

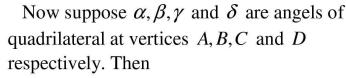
Let m_1 , m_2 , m_3 and m_4 be slopes of side AB,BC,CD and DA. Then

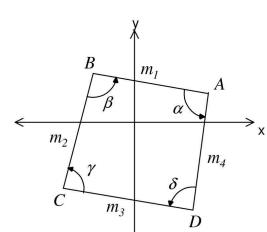
$$m_{1} = \frac{3-2}{-2-5} = \frac{1}{-7}$$

$$m_{2} = \frac{-4-3}{-3+2} = \frac{-7}{-1} = 7$$

$$m_{3} = \frac{-5+4}{4+3} = \frac{-1}{7}$$

$$m_{4} = \frac{2+5}{5-4} = \frac{7}{1} = 7$$





$$\tan \alpha = \frac{m_4 - m_1}{1 + m_4 m_1} = \frac{7 - \left(-\frac{1}{7}\right)}{1 + \left(7\right)\left(-\frac{1}{7}\right)} = \frac{7 + \frac{1}{7}}{1 - 1} = \frac{50}{7} = \infty$$

$$\Rightarrow \alpha = \tan^{-1}(\infty) \qquad \Rightarrow \boxed{\alpha = 90^{\circ}}$$

$$\tan \beta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{-\frac{1}{7} - 7}{1 + \left(-\frac{1}{7}\right)(7)} = \frac{-\frac{50}{7}}{0} = \infty$$

$$\Rightarrow \beta = \tan^{-1}(\infty) \qquad \Rightarrow \boxed{\beta = 90^{\circ}}$$

$$\tan \gamma = \frac{m_2 - m_3}{1 + m_2 m_3} = \frac{7 - \left(-\frac{1}{7}\right)}{1 + \left(7\right)\left(-\frac{1}{7}\right)} = \frac{7 + \frac{1}{7}}{1 - 1} = \frac{\frac{50}{7}}{0} = \infty$$

$$\Rightarrow \gamma = \tan^{-1}(\infty) \qquad \Rightarrow \boxed{\gamma = 90^{\circ}}$$

$$\tan \delta = \frac{m_3 - m_4}{1 + m_3 m_4} = \frac{-\frac{1}{7} - 7}{1 + \left(-\frac{1}{7}\right)(7)} = \frac{-\frac{50}{7}}{0} = \infty$$

$$\Rightarrow \delta = \tan^{-1}(\infty) \qquad \Rightarrow \boxed{\delta = 90^{\circ}}$$

Trapezium

If any two opposite sides of the quadrilateral are parallel then it is called *trapezium*.

Show that the points A(-1,-1), B(-3,0), C(3,7) and D(1,8) are the vertices of the rhombus and find its interior angle.

 m_3

Given vertices are A(-1,-1), B(-3,0), C(3,7) and D(1,8)Solution

Let m_1 , m_2 , m_3 and m_4 be slopes of side \overline{AB} , \overline{BD} , \overline{DC} and \overline{CA} . Then

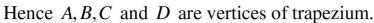
$$m_{1} = \frac{0+1}{-3+1} = \frac{1}{-2}$$

$$m_{2} = \frac{8-0}{1+3} = \frac{8}{4} = 2$$

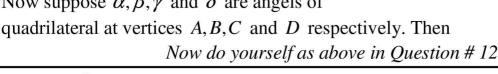
$$m_{3} = \frac{7-8}{3-1} = \frac{-1}{2}$$

$$m_{4} = \frac{-1-7}{-1-3} = \frac{-8}{-4} = 2$$

Since $m_2 = m_4$ or $m_1 = m_3$



Now suppose α, β, γ and δ are angels of



Question #14

Find the area of the region bounded by the triangle, whose sides are

$$7x - y - 10 = 0$$
; $10x + y - 41 = 0$; $3x + 2y + 3 = 0$

Solution

Let
$$l_1: 7x - y - 10 = 0$$

 $l_2: 10x + y - 41 = 0$
 $l_3: 3x + 2y + 3 = 0$

For intersection of l_1 and l_2

$$\frac{x}{41+10} = \frac{-y}{-287+100} = \frac{1}{7+10}$$

$$\Rightarrow \frac{x}{51} = \frac{-y}{-187} = \frac{1}{17}$$

$$\Rightarrow \frac{x}{51} = \frac{1}{17} \quad \text{and} \quad \frac{y}{187} = \frac{1}{17}$$

$$\Rightarrow x = \frac{51}{17} = 3 \quad \text{and} \quad y = \frac{187}{17} = 11$$

 \Rightarrow (3,11) is the point of intersection of l_1 and l_2 .

Now for point of intersection of l_2 and l_3

$$\frac{x}{3+82} = \frac{-y}{30+123} = \frac{1}{20-3}$$

$$\Rightarrow \frac{x}{85} = \frac{-y}{153} = \frac{1}{17}$$

$$\Rightarrow \frac{x}{85} = \frac{-y}{153} = \frac{1}{17}$$

$$\Rightarrow \frac{x}{85} = \frac{1}{17} \quad \text{and} \quad \frac{-y}{153} = \frac{1}{17}$$

$$\Rightarrow x = \frac{85}{17} = 5 \quad \text{and} \quad y = -\frac{153}{17} = -9$$

 \Rightarrow (5,-9) is the point of intersection of l_2 and l_3 .

For point of intersection of l_1 and l_3

$$\frac{x}{-3+20} = \frac{-y}{21+30} = \frac{1}{14+3}$$

$$\Rightarrow \frac{x}{17} = \frac{-y}{51} = \frac{1}{17}$$

$$\Rightarrow \frac{x}{17} = \frac{1}{17} \quad \text{and} \quad \frac{-y}{51} = \frac{1}{17}$$

$$\Rightarrow x = \frac{17}{17} = 1 \quad \text{and} \quad y = -\frac{51}{17} = 3$$

 \Rightarrow (1,-3) is the point of intersection of l_1 and l_3 .

Now area of triangle having vertices (3,11), (5,-9) and (1,-3) is given by:

$$\frac{1}{2} \begin{vmatrix} 3 & 11 & 1 \\ 5 & -9 & 1 \\ 1 & -3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} |3(-9+3)-11(5-1)+1(-15+9)|$$

$$= \frac{1}{2} |3(-6)-11(4)+1(-6)| = \frac{1}{2} |-18-44-6|$$

$$= \frac{1}{2} |-68| = \frac{1}{2} (68) = 34 \text{ sq. unit}$$

Question #15

The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5). Find the centre of the circum centre of the triangle?

Same Question # 7(c) Solution

Question #16

Express the given system of equations in matrix form. Find in each case whether in lines are concurrent.

(a)
$$x+3y-2=0$$
 ; $2x-y+4=0$; $x-11y+14=0$

(b)
$$2x+3y+4=0$$
; $x-2y-3=0$; $3x+y-8=0$

(b)
$$2x+3y+4=0$$
; $x-2y-3=0$; $3x+y-8=0$
(c) $3x-4y-2=0$; $x+2y-4=0$; $3x-2y+5=0$

Solution

(a)
$$x+3y-2=0 \\ 2x-y+4=0 \\ x-11y+14=0$$

In matrix form

$$\begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Coefficient matrix of the system is

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix}$$

$$\Rightarrow |A| = 1(-14 + 44) - 3(28 - 4) - 2(-22 + 1)$$

$$= 1(30) - 3(24) - 2(-21)$$

$$= 30 - 72 + 42 = 0$$

Hence given lines are concurrent.

(b)
$$2x+3y+4=0 x-2y-3=0 3x+y-8=0$$

In matrix form

$$\begin{bmatrix} 2 & 3 & 4 \\ 1 & -2 & -3 \\ 3 & 1 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Coefficient matrix of the system is

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -2 & -3 \\ 3 & 1 & -8 \end{bmatrix}$$

$$\Rightarrow |A| = 2(16+3) - 3(-8+9) + 4(1+6)$$

$$= 2(19) - 3(1) + 4(7) = 38 - 3 + 28 = 63 \neq 0$$

Hence given lines are not concurrent.

Question #17

Find a system of linear equations corresponding to the given matrix form .Check whether the lines responded by the system are concurrent.

Solution

(a)

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x+0-1 \\ 2x+0+1 \\ 0-y+2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x-1 \\ 2x+1 \\ -y+2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Equating the elements

$$x-1=0$$

$$2x+1=0$$

$$-y+2=0$$

are the required equation of lines.

Coefficients matrix of the system

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\Rightarrow \det A = 1(0+1) - 0 - 1(-2-0)$$

$$= 1 + 2 = 3 \neq 0$$

Hence system is not concurrent.

(b)

Do yourself as above.