Exercise 4.5 (Solutions)_{page 28} Calculus and Analytic Geometry, MATHEMATICS 12

Homogenous 2nd Degree Equation

Every homogenous second degree equation

$$ax^2 + 2hxy + by^2 = 0$$

represents straight lines through the origin.

Consider the equations are $y = m_1 x$ and $y = m_2 x$

$$\Rightarrow m_1 x - y = 0$$
 and $m_2 x - y = 0$

Taking product

$$(m_1 x - y)(m_2 x - y) = 0$$

$$\Rightarrow m_1 m_2 x^2 - m_1 xy - m_2 xy + y^2 = 0$$

$$\Rightarrow m_1 m_2 x^2 - (m_1 + m_2) xy + y^2 = 0 \dots (i)$$

Also we have

$$ax^{2} + 2hxy + by^{2} = 0$$

$$\Rightarrow \frac{a}{b}x^{2} + \frac{2h}{b}xy + y^{2} = 0$$

$$\Rightarrow \frac{a}{b}x^{2} - \left(-\frac{2h}{b}\right)xy + y^{2} = 0$$

$$\Rightarrow 0$$

$$\Rightarrow \frac{a}{b}x^{2} - \left(-\frac{2h}{b}\right)xy + y^{2} = 0$$

Comparing it with (i), we have

$$m_1 m_2 = \frac{a}{b}$$
 and $m_1 + m_2 = -\frac{2h}{b}$

Let θ be the angles between the lines then

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$= \frac{\sqrt{(m_1 - m_2)^2}}{1 + m_1 m_2} = \frac{\sqrt{m_1^2 + m_2^2 - 2m_1 m_2}}{1 + m_1 m_1}$$

$$= \frac{\sqrt{m_1^2 + m_2^2 + 2m_1 m_2 - 4m_1 m_2}}{1 + m_1 m_1} = \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_1}$$

$$= \frac{\sqrt{\left(-\frac{2h}{b}\right)^2 - 4\frac{a}{b}}}{1 + \frac{a}{b}} = \frac{\sqrt{\frac{4h^2}{b^2} - \frac{4a}{b}}}{1 + \frac{a}{b}} = \frac{\sqrt{\frac{4h^2 - 4ab}{b^2}}}{\frac{b + a}{b}}$$

$$\Rightarrow \tan \theta = \frac{\sqrt{4(h^2 - ab)}}{b + a} \Rightarrow \tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

Find the lines represented by each of the following and also find measure of the angle between them (problem 1-6)

Question #1

$$10x^2 - 23xy - 5y^2 = 0$$

Solution

$$10x^{2} - 23xy - 5y^{2} = 0 \dots (i)$$

$$\Rightarrow 10x^{2} - 25xy + 2xy - 5y^{2} = 0$$

$$\Rightarrow 5x(2x - 5y) + y(2x - 5y) = 0 \Rightarrow (2x - 5y)(5x + y) = 0$$

$$\Rightarrow 2x - 5y = 0 \text{ and } 5x + y = 0$$
are the required lines.

Comparing eq. (i) with

$$ax^2 + 2hxy + by^2 = 0$$

So
$$a=10$$
 , $2h=-23 \Rightarrow h=-\frac{23}{2}$, $b=-5$

Let θ be angle between lines then

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

$$= \frac{2\sqrt{\left(-\frac{23}{2}\right)^2 - (10)(-5)}}{10 - 5} = \frac{2\sqrt{\frac{529}{4} + 50}}{5}$$

$$= \frac{2\sqrt{\frac{729}{4}}}{5} = \frac{2\left(\frac{27}{2}\right)}{5} = \frac{27}{5}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{27}{5}\right) = 79^{\circ}31'$$

Hence acute angle between the lines $= 79^{\circ}31'$

Question #2

$$3x^2 + 7xy + 2y^2 = 0$$

Solution

Do yourself as above

Question #3

$$9x^2 + 24xy + 16y^2 = 0$$

Solution

Do yourself as above

Question #4

$$\Rightarrow 2x^2 + 5xy - 2xy - 5y^2 = 0$$

$$\Rightarrow x(2x+5y)-y(2x+5y) = 0$$

$$\Rightarrow (2x+5y)(x-y) = 0$$

$$\Rightarrow$$
 2x+5y = 0 and x-y = 0

are the required lines.

Comparing eq. (i) with

$$ax^2 + 2hxy + by^2 = 0$$

$$\Rightarrow a=2$$
 , $2h=3 \Rightarrow h=\frac{3}{2}$, $b=-5$

Let θ be angle between lines then

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

$$= \frac{2\sqrt{\left(\frac{3}{2}\right)^2 - (2)(-5)}}{2 - 5} = \frac{2\sqrt{\frac{9}{4} + 10}}{-3}$$

$$= -\frac{2\sqrt{\frac{49}{4}}}{3} = -\frac{2\left(\frac{7}{2}\right)}{3} = -\frac{7}{3}$$

$$\Rightarrow -\tan \theta = \frac{7}{3}$$

$$\Rightarrow \tan(180 - \theta) = \frac{7}{3} \qquad \therefore \tan(180 - \theta) = -\tan \theta$$

$$\Rightarrow 180 - \theta = \tan^{-1}\left(\frac{7}{3}\right) \qquad \Rightarrow 180 - \theta = 66^{\circ}48'$$

Hence acute angle between the lines = $180-113^{\circ}12'$ = $66^{\circ}48'$

Question #5

$$6x^2 - 19xy + 15y^2 = 0$$

 $\Rightarrow \theta = 180 - 66^{\circ}48' = 113^{\circ}12'$

Solution

Do yourself as above

Question # 6

$$x^2 - 2xy \sec \alpha + y^2 = 0$$

Solution

$$x^2 - 2xy \sec \alpha + y^2 = 0$$
(i)

 \div ing by v^2

$$\frac{x^2}{y^2} - \frac{2xy \sec \alpha}{y^2} + \frac{y^2}{y^2} = 0$$

$$\Rightarrow \left(\frac{x}{y}\right)^2 - 2\sec \alpha \left(\frac{x}{y}\right) + 1 = 0$$

This is quadric equation in $\frac{x}{y}$ with a=1, $b=-2\sec\alpha$, c=1

$$\frac{x}{y} = \frac{2\sec\alpha \pm \sqrt{(-2\sec\alpha)^2 - 4(1)(1)}}{2(1)}$$

$$= \frac{2\sec\alpha \pm \sqrt{4\sec^2\alpha - 4}}{2(1)} = \frac{2\sec\alpha \pm \sqrt{4(\sec^2\alpha - 1)}}{2}$$

$$= \frac{2\sec\alpha \pm \sqrt{4\tan^2\alpha}}{2} \qquad \because 1 + \tan^2\alpha = \sec^2\alpha$$

$$= \frac{2\sec\alpha \pm 2\tan\alpha}{2}$$

$$\Rightarrow \frac{x}{y} = \sec\alpha \pm \tan\alpha$$

$$= \frac{1}{\cos\alpha} \pm \frac{\sin\alpha}{\cos\alpha} = \frac{1 \pm \sin\alpha}{\cos\alpha}$$

$$\Rightarrow \frac{x}{y} = \frac{1 + \sin\alpha}{\cos\alpha} \text{ and } \frac{x}{y} = \frac{1 - \sin\alpha}{\cos\alpha}$$

$$\Rightarrow x\cos\alpha = (1 + \sin\alpha)y \text{ and } x\cos\alpha = (1 - \sin\alpha)y$$

$$\Rightarrow x\cos\alpha - (1 + \sin\alpha)y = 0 \text{ and } x\cos\alpha - (1 - \sin\alpha)y = 0$$

These are required equations of lines.

Now comparing (i) with

$$ax^{2} + 2hxy + by^{2} = 0$$

$$a=1 , 2h = -2\sec\alpha \Rightarrow h = -\sec\alpha , b=1b$$

If θ is angle between lines then

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

$$= \frac{2\sqrt{\sec^2 \alpha - (1)(1)}}{1 + 1} = \frac{2\sqrt{\sec^2 \alpha - 1}}{2} = \sqrt{\tan^2 \alpha}$$

$$\Rightarrow \tan \theta = \tan \alpha \Rightarrow \theta = \alpha.$$

Note:

If one wish to get the answer similar to given at the end of textbook, then follow the solution as follows after getting:

$$x\cos\alpha - (1+\sin\alpha)y = 0$$
 and $x\cos\alpha - (1-\sin\alpha)y = 0$

Multiplying equation at left with $\frac{1-\sin\alpha}{\cos\alpha}$ and equation at right with $\frac{1+\sin\alpha}{\cos\alpha}$ to get

$$x(1-\sin\alpha) - \frac{\left(1-\sin^2\alpha\right)}{\cos\alpha}y = 0 \quad \text{and} \quad x(1+\sin\alpha) - \frac{\left(1-\sin^2\alpha\right)}{\cos\alpha}y = 0$$

$$\Rightarrow x(1-\sin\alpha) - y\cos\alpha = 0 \quad \text{and} \quad x(1+\sin\alpha) - y\cos\alpha = 0$$

Question #7

Find a joint equation of the lines through the origin and perpendicular to the lines: $x^2 - 2xy \tan \alpha - y^2 = 0$

Solution Given:
$$x^2 - 2xy \tan \alpha - y^2 = 0$$

Suppose m_1 and m_2 are slopes of given lines then

$$m_1 + m_2 = -\frac{2h}{b}$$

$$= -\frac{2\tan \alpha}{-1}$$

$$\Rightarrow m_1 + m_2 = -2\tan \alpha$$

$$m_1 + m_2 = -2\tan \alpha$$

Now slopes of lines \perp ar to given lines are $-\frac{1}{m_1}$ and $-\frac{1}{m_2}$, then their equations are

$$y = -\frac{1}{m_1}x \quad \& \quad y = -\frac{1}{m_2}x \qquad \text{(Passing through origin)}$$

$$\Rightarrow m_1 y = -x \quad \& \quad m_2 y = -x$$

$$\Rightarrow x + m_1 y = 0 \quad \& \quad x + m_2 y = 0$$

Their joint equation:

$$(x+m_1y)(x+m_2y) = 0$$

$$\Rightarrow x^2 + (m_1 + m_2)xy + m_1m_2y^2 = 0$$

$$\Rightarrow x^2 + (-2\tan\alpha)xy + (-1)y^2 = 0$$

$$\Rightarrow x^2 - 2xy\tan\alpha - y^2 = 0$$

Question #8

Find a joint equation of the lines through the origin and perpendicular to the lines: $ax^2 + 2hxy + by^2 = 0$

Solution

Given:
$$ax^2 + 2hxy + by^2 = 0$$

Suppose m_1 and m_2 are slopes of given lines then

$$m_1 + m_2 = -\frac{2h}{b}$$
 & $m_1 m_2 = \frac{a}{b}$

Now slopes of lines \perp ar to given lines are $-\frac{1}{m_1}$ and $-\frac{1}{m_2}$, then their equations

are

$$y = -\frac{1}{m_1}x$$
 & $y = -\frac{1}{m_2}x$ (Passing through origin)
 $\Rightarrow m_1y = -x$ & $m_2y = -x$
 $\Rightarrow x + m_1y = 0$ & $x + m_2y = 0$

Their joint equation:

$$(x+m_1y)(x+m_2y) = 0$$

$$\Rightarrow x^2 + (m_1 + m_2)xy + m_1m_2y^2 = 0$$

$$\Rightarrow x^2 + \left(-\frac{2h}{b}\right)xy + \left(\frac{a}{b}\right)y^2 = 0$$

$$\Rightarrow bx^2 - 2hxy + ay^2 = 0$$

Question #9

Find the area of the region bounded by:

Solution
$$10x^{2} - xy - 21y^{2} = 0 \text{ and } x + y + 1 = 0$$

$$10x^{2} - xy - 21y^{2} = 0 , x + y + 1 = 0$$

$$\Rightarrow 10x^{2} - 15xy + 14xy - 21y^{2} = 0$$

$$\Rightarrow 5x(2x - 3y) + 7y(2x - 3y) = 0$$

$$\Rightarrow (2x - 3y)(5x + 7y) = 0$$

$$\Rightarrow 2x - 3y = 0 \text{ or } 5x + 7y = 0$$

So we have equation of lines

$$l_3: x+y+1 = 0$$
(iii)

Now do yourself as Q # 14 (Ex. 4.4)