LINEAR INEQUALITIES AND LINEAR PROGRAMMING

EXERCISE 5.1

Q.1: Graph the solution set of each of the following linear inequality in xy-plane.

(i)
$$2x + y < 6$$

(ii)
$$3x + 7y \ge 21$$

(iii)
$$3x-2y > 6$$

$$(iv) 5x - 4y \le 20$$

$$(v) 2x + 1 \ge 0$$

(vi)
$$3y-4 \leq 0$$

Solution:

(i)
$$2x + y \le 6$$

The associated equation is

$$2x + y = 6$$
 (1)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$2x + 0 = 6$$

$$x = \frac{6}{2} = 3$$

$$\therefore$$
 Point is $(3, 0)$

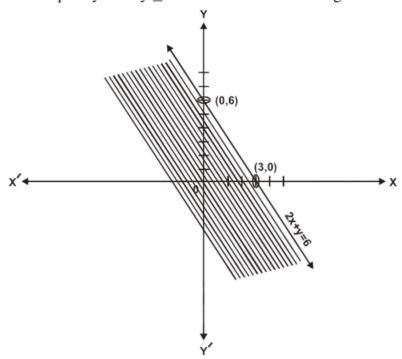
y-intercept

Put
$$x = 0$$
 in eq. (1)

$$2(0) + y = 6$$

$$y = 6$$

$$\therefore$$
 Point is $(0, 6)$


Test Point

Put
$$(0, 0)$$
 in

$$2x + y < 6$$

$$2(0) + 0 < 6$$

 \therefore Graph of an inequality $2x + y \le 6$ will be towards the origin side.

(ii)
$$3x + 7y \ge 21$$

The associated equation is

$$3x + 7y = 21$$
(1)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$3x + 7(0) = 21$$

$$3x = 21$$

$$x = \frac{21}{3} = 7$$

\therefore Point is (7, 0)

y-intercept

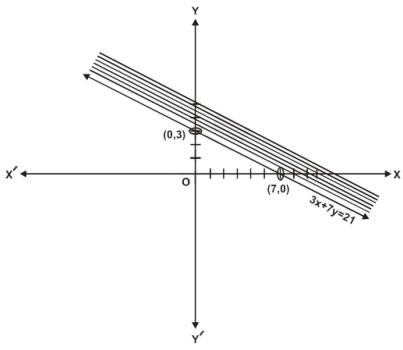
Put
$$x = 0$$
 in eq. (1)

$$3(0) + 7y = 21$$

$$7y = 21$$

$$y = \frac{21}{7} = 3$$

 \therefore Point is (0,3)


0 > 21

Test Point

Put
$$(0, 0)$$
 in
 $3x + 7y > 21$
 $3(0) + 7(0) > 21$

Which is false.

 \therefore Graph of an inequality $3x + 7y \ge 21$ will not be towards the origin side.

(iii)
$$3x-2y \ge 6$$

The associated equation is

$$3x - 2y = 6$$
(1)

 $\underline{x\text{-intercept}}$

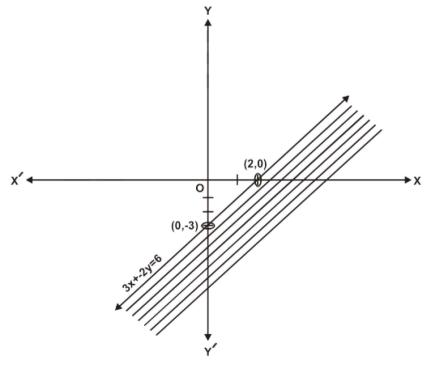
Put
$$y = 0$$
 in eq. (1)
 $3x - 2(0) = 6$
 $3x = 6$

$$x = \frac{6}{3} = 2$$

Point is (2, 0) *:* .

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) - 2y = 6$
 $-2y = 6$
 $y = \frac{6}{-2} = -3$


 \therefore Point is (0, -3)

Test Point

Put
$$(0, 0)$$
 in $3x - 2y > 6$
 $3(0) + 2(0) > 6$
 $0 > 6$

Which is false.

 \therefore Graph of an inequality $3x - 2y \ge 6$ will not be towards the origin side.

(iv)
$$5x - 4y \le 20$$

The associated equation is

$$5x - 4y = 20$$
(1)

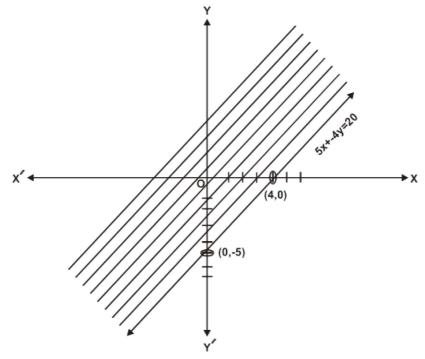
x-intercept

Put
$$y = 0$$
 in eq. (1)
 $5x - 4(0) = 20$
 $5x = 20$
 $x = \frac{20}{5} = 4$

 \therefore Point is (4, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $5(0) - 4y = 20$
 $-4y = 20$
 $y = \frac{20}{-4} = -5$


 $\therefore \quad \text{Point is } (0, -5)$

Test Point

Put
$$(0, 0)$$
 in
 $5x - 4y < 20$
 $5(0) - 4(0) < 20$
 $0 < 20$

Which is true.

 \therefore Graph of an inequality $5x - 4y \le 20$ will be towards the origin side.

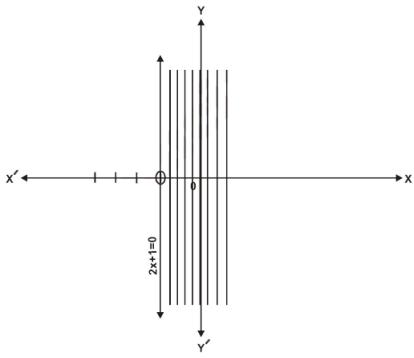
$$(v) 2x + 1 \ge 0$$

The associated equation is

$$2x + 1 = 0$$

$$2x = -1$$

$$x = \frac{-1}{2}$$


Put
$$x = 0$$
 in

$$2x + 1 > 0$$

$$2(0) + 1 > 0$$

Which is true.

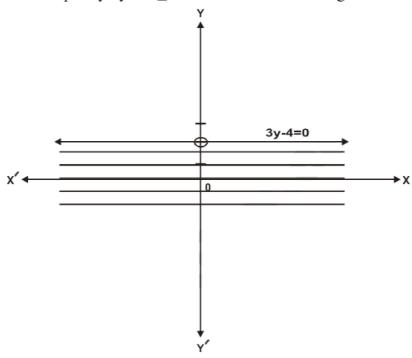
Graph of an inequality $2x + 1 \ge 0$ will be towards the origin side. ٠.

(vi)
$$3y-4 \leq 0$$

The associated equation is

$$3y - 4 = 0$$

$$3y = 4$$


$$y = \frac{4}{3}$$

Put
$$y = 0$$
 in

$$3y - 4 < 0$$

$$-4 < 0$$

 \therefore Graph of an inequality $3y - 4 \le 0$ will be towards the origin side.

Q.2: Indicate the solution set of the following systems of linear inequalities by shading.

 $x - y \le 1$

$$(i) 2x - 3y \le 6$$

(ii)
$$x + y \ge 5$$

(iii)
$$3x + 7y \ge 21$$
$$x - y \le 2$$

$$2x + 3y \le 12$$

(iv) $4x - 3y \le 12$

$$4x - 3y \le 12$$
$$x \ge \frac{-3}{2}$$

(v)
$$3x + 7y \ge 21$$
 (Lhr. Board 2011)
 $y \le 4$

Solution:

$$(i) 2x - 3y \leq 6$$

$$2x + 3y \leq 12$$

The associated equations are

$$2x - 3y = 6$$
 (1)

$$2x + 3y = 12$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $2x - 3(0) = 6$
 $2x = 6$
 $x = \frac{6}{2} = 3$

 \therefore Point is (3, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $2(0) - 3y = 6$
 $-3y = 6$
 $y = \frac{6}{-3} = -2$

 \therefore Point is (0, -2)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $2x + 3(0) = 12$
 $2x = 12$
 $x = \frac{12}{2} = 6$

 \therefore Point is (6, 0)

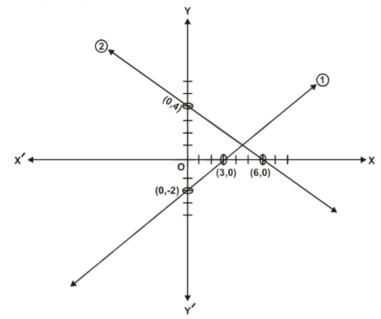
y-intercept

Put
$$x = 0$$
 in eq. (2)
 $2(0) + 3y = 12$
 $3y = 12$
 $y = \frac{12}{3} = 4$

 \therefore Point is (0, 4)

Test Point

Put
$$(0, 0)$$
 in $2x - 3y < 6$


$$2(0) - 3(0) < 6$$

0 < 6

 \therefore Graph of an inequality $2x - 3y \le 6$ will be towards the origin side.

Put
$$(0, 0)$$
 in
 $2x + 3y < 12$
 $2(0) - 3(0) < 12$
 $0 < 12$

Which is true.

 \therefore Graph of an inequality $2x + 3y \le 12$ will be towards the origin side.

(ii)
$$x+y \ge 5$$

 $x-y \le 1$

The associated equations are

$$x + y = 5$$
 (1)
 $x - y = 1$ (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $x + 0 = 5$
 $x = 5$

 $\therefore \quad \text{Point is } (5,0)$

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $0 + y = 5$

$$y = 5$$

 \therefore Point is (0, 5)

x-intercept

Put
$$y = 0 \text{ in eq. (2)}$$

 $x - 0 = 1$
 $x = 1$

 \therefore Point is (1,0)

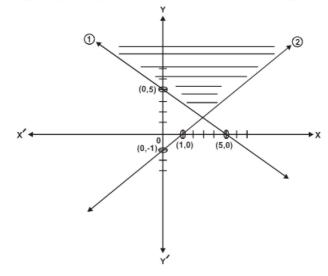
y-intercept

Put
$$x = 0$$
 in eq. (2)
 $0 - y = 1$
 $y = -1$

 \therefore Point is (0, -1)

Test Point

Put
$$(0, 0)$$
 in $x + y > 5$
 $0 + 0 > 5$
 $0 > 5$


Which is false.

 \therefore Graph of an inequality $x + y \ge 5$ will not be towards the origin side.

Put
$$(0, 0)$$
 in $x-y < 1$
 $0-0 < 1$
 $0 < 1$

Which is true.

 \therefore Graph of an inequality $x - y \le 1$ will be towards the origin side.

(iii)
$$3x + 7y \ge 21$$

$$x - y \le 2$$

The associated equations are

$$3x + 7y = 21$$
 (1)

$$x - y = 2 \dots (2)$$

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $3x + 7(0) = 21$
 $3x = 21$
 $x = \frac{21}{3} = 7$

 \therefore Point is (7,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) + 7y = 21$
 $7y = 21$
 $y = \frac{21}{7} = 3$

 \therefore Point is (0, 3)

x-intercept

Put
$$y = 0 \text{ in eq. (2)}$$

 $x - 0 = 2$
 $x = 2$

 \therefore Point is (2,0)

<u>y-intercept</u>

Put
$$x = 0$$
 in eq. (2)
 $0 - y = 2$
 $y = -2$

 \therefore Point is (0, -2)

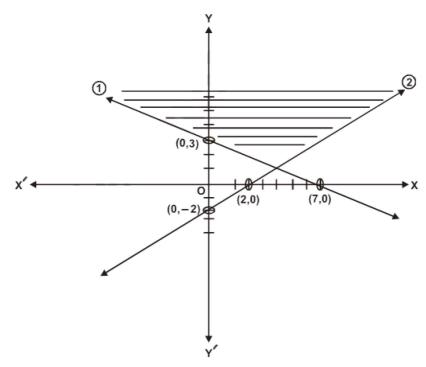
Test Point

Put
$$(0, 0)$$
 in $3x + 7y > 21$

$$3(0) + 7(0) > 21$$

Which is false.

 \therefore Graph of an inequality $3x + 7y \ge 21$ will not be towards the origin side.


Put (0,0) in

$$x-y < 2$$

$$0-0 < 2$$

Which is true.

 \therefore Graph of an inequality $x - y \le 2$ will be towards the origin side.

(iv)
$$4x - 3y \le 12$$

$$x \ge \frac{-3}{2}$$

The associated equations are

$$4x - 3y = 12$$
 (1)

$$x = \frac{-3}{2}$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $4x - 3(0) = 12$
 $4x = 12$
 $x = \frac{21}{4} = 3$

Point is (3, 0)

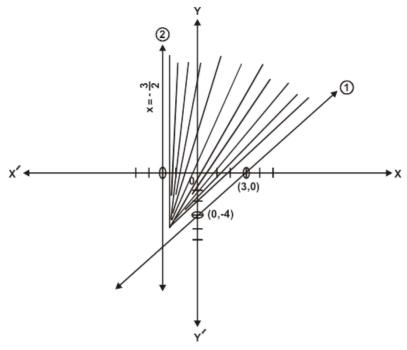
y-intercept

Put
$$x = 0$$
 in eq. (1)
 $4(0) - 3y = 12$
 $-3y = 12$
 $y = \frac{12}{-3} = -4$

Point is (0, -4)

Test Point

Put
$$(0, 0)$$
 in
 $4x - 3y < 12$
 $4(0) - 3(0) < 12$
 $0 < 12$


Which is true.

Graph of an inequality $4x - 3y \le 12$ will be towards the origin side. ٠.

Put
$$x = 0$$
 in $x > \frac{-3}{2}$ $0 > \frac{-3}{2}$

Which is true.

Graph of an inequality $x \ge \frac{-3}{2}$ will be towards the origin side. ٠.

$$(v) 3x + 7y \ge 21$$

$$y \leq 4$$

The associated equations are

$$3x + 7y = 21$$
 (1)
 $y = 4$ (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $3x + 7(0) = 21$
 $3x = 21$
 $x = \frac{21}{3} = 7$

\therefore Point is (7,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) + 7y = 21$
 $7y = 21$
 $y = \frac{21}{7} = 3$

Point is (0, 3)

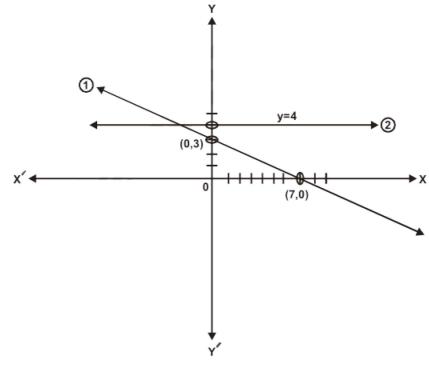
Test Point

Put
$$(0, 0)$$
 in

$$3x + 7y > 21$$

$$3(0) + 7(0) > 21$$

Which is false.


Graph of an inequality $3x + 7y \ge 21$ will not be towards the origin side.

459

Put
$$y = 0$$
 in

Which is true.

Graph of an inequality $y \le 4$ will be towards the origin side.

Indicate the solution region of the following systems of linear inequalities by Q.3: shading.

$$(i) 2x - 3y \le 6$$

 $y \ge 0$

$$2x + 3y \le 12$$

(ii)
$$x + y \le 5$$

$$y-2x \leq 2$$

$$x \ge 0$$

(iii)
$$x + y \ge 5$$

$$x-y \ge 1$$

$$y \ge 0$$

$$(iv) \qquad 3x + 7y \le 21$$

$$(v) 3x + 7y \le 21$$

$$(vi) 3x + 7y \le 21$$

$$\begin{array}{l}
 x - y \leq 2 \\
 x > 0
 \end{array}$$

$$\begin{array}{l}
 x - y \le 2 \\
 y \ge 0
 \end{array}$$

460

$$2x - y \ge -3 \\
x \ge 0$$

Solution:

(i)
$$2x-3y \le 6$$
 (Lhr. Board 2007)
 $2x+3y \le 12$
 $y \ge 0$

The associated equations are

$$2x - 3y = 6$$
 (1)

$$2x + 3y = 12$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $2x - 3(0) = 6$
 $2x = 6$
 $x = \frac{6}{2} = 3$

 \therefore Point is (3, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $2(0) - 3y = 6$
 $-3y = 6$
 $y = \frac{6}{-3} = -2$

 \therefore Point is (0, -2)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $2x + 3(0) = 12$
 $2x = 12$
 $x = \frac{12}{2} = 6$

 \therefore Point is (6,0)

y-intercept

Put
$$x = 0$$
 in eq. (2)

$$2(0) + 3y = 12$$

$$3y = 12$$

$$y = \frac{12}{3} = 4$$

 \therefore Point is (0, 4)

Test Point

Put
$$(0, 0)$$
 in

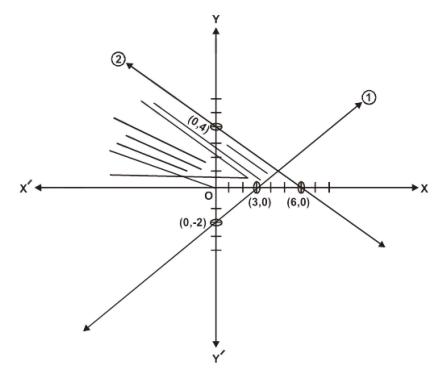
$$2x - 3y < 6$$

$$2(0) - 3(0) < 6$$

Which is true.

 \therefore Graph of an inequality $2x - 3y \le 6$ will be towards the origin side.

461


Put
$$(0,0)$$
 in

$$2x + 3y < 12$$

$$2(0) + 3(0) < 12$$

Which is true.

 \therefore Graph of an inequality $2x + 3y \le 12$ will be towards the origin side.

(ii)
$$x + y \leq 5$$

$$y - 2x \leq 2$$

$$x \geq 0$$

The associated equations are

$$x + y = 5$$
 (1)

$$y - 2x = 2$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $x + 0 = 5$
 $x = 5$

 \therefore Point is (5,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $0 + y = 5$
 $y = 5$

 \therefore Point is (0, 5)

x-intercept

Put y = 0 in eq. (2)

$$0-2x = 2$$

 $x = \frac{2}{-2} = -1$

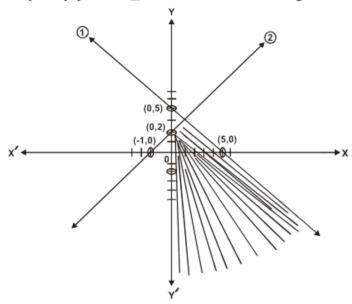
 \therefore Point is (-1, 0)

y-intercept

Put
$$x = 0$$
 in eq. (2)
 $y-2(0) = 2$
 $y = 2$

 \therefore Point is (0, 2)

Test Point


Put
$$(0, 0)$$
 in $x + y < 5$
 $0 + 0 < 5$
 $0 < 5$

Which is true.

.. Graph of an inequality $x + y \le 5$ will towards the origin side. Put (0, 0) in

$$y-2x < 2 0-2(0) < 2 0 < 2$$

 \therefore Graph of an inequality $y - 2x \le 2$ will towards the origin side.

(iii)
$$x + y \ge 5$$

 $x - y \ge 1$
 $y \ge 0$

The associated equations are

$$x + y = 5$$
 (1)

$$x - y = 1$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$x + 0 = 5$$

$$x = 5$$

 \therefore Point is (5,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)

$$0 + y = 5$$

 \therefore Point is (0, 5)

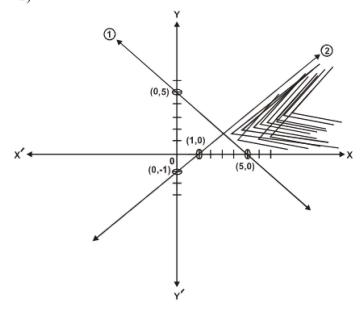
x-intercept

Put
$$y = 0$$
 in eq. (2)

$$x - 0 = 1$$

$$\mathbf{x} = 1$$

$$\therefore$$
 Point is $(1, 0)$


y-intercept

Put
$$x = 0$$
 in eq. (2)

$$0-y = 1$$

$$y = -1$$

 \therefore Point is (0, -1)

Test Point

Put
$$(0,0)$$
 in

$$x + y > 5$$

$$0+0 > 5$$

Which is false.

 \therefore Graph of an inequality $x + y \ge 5$ will not be towards the origin side.

Put (0,0) in

$$x-y > 1$$

$$0-0 > 1$$

Which is false.

 \therefore Graph of an inequality $x - y \ge 1$ will not be towards the origin side.

(iv)
$$3x + 7y \le 21$$

$$x - y \le 2$$

$$x \ge 0$$

The associated equations are

$$3x + 7y = 21$$
 (1)

$$x - y = 2$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$3x + 7(0) = 21$$

$$3x = 21$$

$$x = \frac{21}{3} = 7$$

 \therefore Point is (7,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)

$$3(0) + 7y = 21$$

$$7y = 21$$

$$y = \frac{21}{7} = 3$$

 \therefore Point is (0, 3)

x-intercept

Put
$$y = 0$$
 in eq. (2)

$$x - 0 = 2$$

$$x = 2$$

 \therefore Point is (2,0)

<u>y-intercept</u>

Put
$$x = 0$$
 in eq. (2)

$$0-y = 2$$

$$y = -2$$

 \therefore Point is (0, -2)

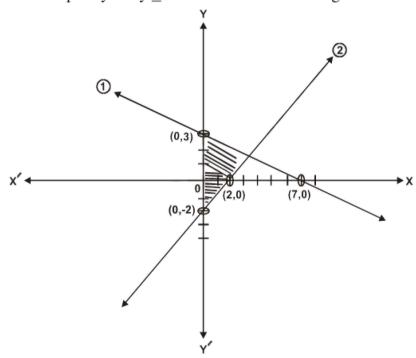
Test Point

Put
$$(0, 0)$$
 in

$$3x + 7y < 21$$

$$3(0) + 7(0) < 21$$

 \therefore Graph of an inequality $3x + 7y \le 21$ will be towards the origin side.


Put
$$(0,0)$$
 in

$$x-y < 2$$

$$0-0 < 2$$

Which is true.

 \therefore Graph of an inequality $x - y \le 2$ will be towards the origin side.

(v)
$$3x + 7y \le 21$$
 (Gujranwala Board 2007)

$$x - y \le 2$$

$$y \ge 0$$

The associated equations are

$$3x + 7y = 21$$
 (1)

$$x - y = 2$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$3x + 7(0) = 21$$
$$3x = 21$$
$$x = \frac{21}{3} = 7$$

 \therefore Point is (7,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) + 7y = 21$
 $7y = 21$
 $y = \frac{21}{7} = 3$

 \therefore Point is (0, 3)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $x - 0 = 2$
 $x = 2$

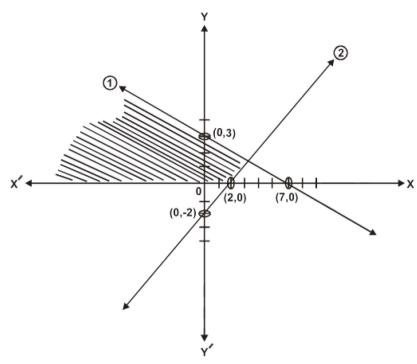
 \therefore Point is (2,0)

y-intercept

Put
$$x = 0$$
 in eq. (2)
 $0-y = 2$
 $y = -2$

 \therefore Point is (0, -2)

Test Point


Put
$$(0, 0)$$
 in
 $3x + 7y < 21$
 $3(0) + 7(0) < 21$
 $0 < 21$

Which is true.

 \therefore Graph of an inequality $3x + 7y \le 21$ will be towards the origin side.

Put
$$(0, 0)$$
 in $x - y < 2$
 $0 - 0 < 2$

 \therefore Graph of an inequality $x - y \le 2$ will be towards the origin side.

(vi)
$$3x + 7y \le 21$$
 (Gujranwala Board 2006) $2x - y \ge -3$

$$x \geq 0$$

The associated equations are

$$3x + 7y = 21$$
 (1)

$$2x - y = -3$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$3x + 7(0) = 21$$

$$3x = 21$$

$$x = \frac{21}{3} = 7$$

 \therefore Point is (7, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) + 7y = 21$
 $7y = 21$
 $y = \frac{21}{7} = 3$

 \therefore Point is (0,3)

x-intercept

Put y = 0 in eq. (2)

$$2x - 0 = -3$$

 $x = \frac{-3}{2}$

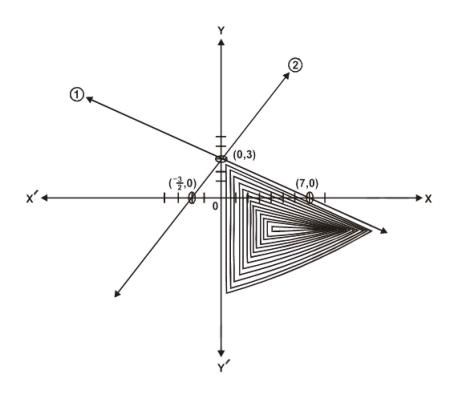
$$\therefore$$
 Point is $\left(\frac{-3}{2}, 0\right)$

y-intercept

Put
$$x = 0$$
 in eq. (2)
 $2(0) - y = -3$
 $-y = -3$
 $y = 3$

 \therefore Point is (0,3)

Test Point


Put
$$(0, 0)$$
 in
 $3x + 7y < 21$
 $3(0) + 7(0) < 21$
 $0 < 21$

Which is true.

 \therefore Graph of an inequality $3x + 7y \le 21$ will be towards the origin side.

Put
$$(0, 0)$$
 in
 $2x - y > -3$
 $2(0) - 0 > -3$
 $0 > -3$

Graph of an inequality $2x - y \ge -3$ will be towards the origin side.

Graph the solution region of the following system of linear inequalities and Q.4: find the corner points in each case.

$$(i) 2x - 3y \le 6$$

$$2x + 3y \le 12$$

(ii)
$$x + y \le 5$$
$$-2x + y \le 2$$

$$(iii) 3x + 7y \le 21$$

$$x \ge 0$$

$$y \ge 0$$

$$2x - y \le -3$$

$$(iv) 3x + 2y \ge 6$$

$$x + 3y \le 6$$

(v)
$$5x + 7y \le 35$$
 (vi) $5x + 7y \le 35$

$$y \ge 0$$
(vi)
$$5y + 7y$$

$$-x+3y\leq 3$$

$$x - 2y \le 2$$

$$y \geq 0$$

$$x \geq 0$$

$$x \geq 0$$

Solution:

$$(i) 2x - 3y \leq 6$$

$$2x + 3y \leq 12$$

$$x \ge 0$$

The associated equations are

$$2x - 3y = 6$$
 (1)

$$2x + 3y = 12$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $2x - 3(0) = 6$
 $2x = 6$
 $x = \frac{6}{2} = 3$

\therefore Point is (3, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $2(0) - 3y = 6$
 $-3y = 6$
 $y = \frac{6}{-3} = -2$

\therefore Point is (0, -2)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $2x + 3(0) = 12$
 $x = 12$
 $x = \frac{12}{2} = 6$

\therefore Point is (6, 0)

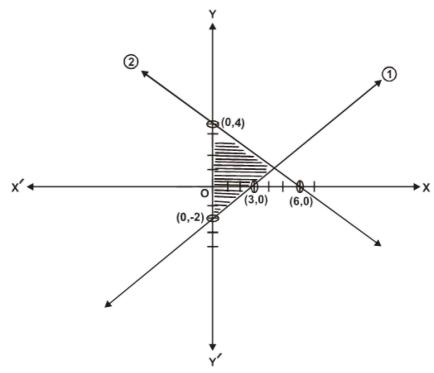
y-intercept

Put
$$x = 0$$
 in eq. (2)
 $2(0) + 3y = 12$
 $3y = 12$
 $y = \frac{12}{3} = 4$

\therefore Point is (0, 4)

Test Point

Put
$$(0, 0)$$
 in
 $2x - 3y < 6$
 $2(0) - 3(0) < 6$


 \therefore Graph of an inequality $2x - 3y \le 6$ will be towards the origin side.

472

Put
$$(0, 0)$$
 in
 $2x + 3y < 12$
 $2(0) + 3(0) < 12$
 $0 < 12$

Which is true.

 \therefore Graph of an inequality $2x + 3y \le 12$ will be towards the origin side.

To find the intersection of both the lines solving eq. (1) & eq. (2)

Adding eq. (1) and eq. (2)

$$2x - 3y = 6$$

$$2x + 3y = 12$$

$$4x = 18$$

$$x = \frac{18}{4} = \frac{9}{2}$$

Put
$$x = \frac{9}{2}$$
 in eq. (1)

$$2\left(\frac{9}{2}\right) - 3y = 6$$

$$9 - 3y = 6$$

$$y = \frac{8}{3} = 1$$

 $\therefore \quad \operatorname{Point}\left(\frac{9}{2}, 1\right)$

So the corner points are (0, -2), $(\frac{9}{2}, 1)(0, 4)$

(ii)
$$x + y \leq 5$$

$$-2x + y \leq 2$$

$$y \geq 0$$

The associated equations are

$$x + y = 5$$
 (1)
 $y - 2x = 2$ (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $x + 0 = 5$
 $x = 5$

 \therefore Point is (5,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $0 + y = 5$
 $y = 5$

 \therefore Point is (0, 5)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $0-2x = 2$
 $x = \frac{2}{-2} = -1$

 \therefore Point is (-1, 0)

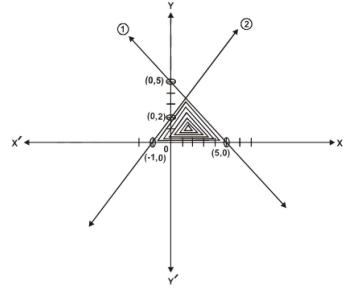
y-intercept

Put
$$x = 0$$
 in eq. (2)
 $y-2(0) = 2$
 $y = 2$

 \therefore Point is (0, 2)

Test Point

Put
$$(0, 0)$$
 in $x + y < 5$
 $0 + 0 < 5$
 $0 < 5$


Which is true.

 \therefore Graph of an inequality $x + y \le 5$ will towards the origin side.

Put
$$(0, 0)$$
 in $y-2x < 2$
 $0-2(0) < 2$
 $0 < 2$

Which is true.

 \therefore Graph of an inequality $y - 2x \le 2$ will towards the origin side.

To find the intersection of both the lines solving eq. (1) & eq. (2).

Equation (1) – Eq. (2), we get

$$x + y = 5$$

$$-2x \pm y = -2$$

$$3x = 3$$

$$x = \frac{3}{3} = 1$$

Put
$$x = 1$$
 in eq. (1)

$$1 + y = 5$$

 $y = 5 - 1 = 4$

 \therefore Point (1,4)

So the corner points are (-1, 0), (5, 0), (1, 4)

475

(iii)
$$3x + 7y \le 21$$

$$2x-y\,\leq\,-3$$

The associated equations are

$$3x + 7y = 21$$
 (1)

$$2x - y = -3$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)

$$3x + 7(0) = 21$$

$$3x = 21$$

$$x = \frac{21}{3} = 7$$

$$\therefore$$
 Point is $(7,0)$

y-intercept

Put
$$x = 0$$
 in eq. (1)

$$3(0) + 7y = 21$$

$$7y = 21$$

$$y = \frac{21}{7} = 3$$

$$\therefore$$
 Point is $(0,3)$

x-intercept

Put
$$y = 0$$
 in eq. (2)

$$2x - 0 = -3$$

$$x = \frac{-3}{2}$$

$$\therefore$$
 Point is $\left(\frac{-3}{2}, 0\right)$

y-intercept

Put
$$x = 0$$
 in eq. (2)

$$2(0) - y = -3$$

$$-y = -3$$

$$y = 3$$

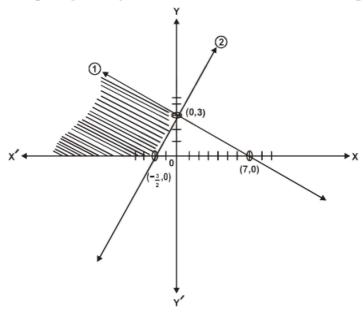
 \therefore Point is (0, 3)

Test Point

Put
$$(0, 0)$$
 in $3x + 7y < 21$
 $3(0) + 7(0) < 21$
 $0 < 21$

Which is true.

 \therefore Graph of an inequality $3x + 7y \le 21$ will not be towards the origin side.


Put
$$(0, 0)$$
 in

$$2x - y < -3$$

 $2(0) - 0 < -3$

$$0 < -3$$

Which is false.

 \therefore Graph of an inequality $2x - y \le -3$ will not be towards the origin side.

So the corner points are $\left(\frac{-3}{2}, 0\right)(0, 3)$

(iv)
$$3x + 2y \ge 6$$

$$x + 3y \le 6$$

$$y \ge 0$$

The associated equations are

$$3x + 2y = 6$$
 (1)

$$x + 3y = 6$$
 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $3x + 2(0) = 6$
 $3x = 6$
 $x = \frac{6}{3} = 2$

 \therefore Point is (2,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $3(0) + 2y = 6$
 $y = \frac{6}{2} = 3$

 \therefore Point is (0, 3)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $x + 3$ (0) = 6
 $x = 6$

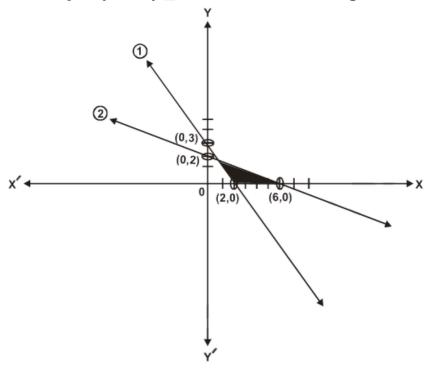
 \therefore Point is (6, 0)

y-intercept

Put
$$x = 0$$
 in eq. (2)
 $0 + 3y = 6$
 $y = \frac{6}{3}$
 $y = 2$

 \therefore Point is (0, 2)

Test Point


Put
$$(0, 0)$$
 in $3x + 2y > 6$
 $3(0) + 2(0) > 6$
 $0 < 6$

Which is false.

.. Graph of an inequality $3x + 2y \ge 6$ will not be towards the origin side. Put (0, 0) in x + 3y < 6

$$0 - 3(0) < 6$$

Graph of an inequality $x + 3y \le 6$ will be towards the origin side.

To find the intersection of both the equations solving eq. (1) & eq. (2)

Eq.
$$(1) - \text{Eq. } (2) \times 3$$
, we get

$$3x + 2y = 6$$
$$-3x \pm 9y = -18$$

$$-7y = -12$$

$$y = \frac{12}{7}$$

Put
$$y = \frac{12}{7}$$
 in eq. (2)

$$x + 3\left(\frac{12}{7}\right) = 6$$

$$x + \frac{36}{7} = 6$$

$$x = 6 - \frac{36}{7}$$

$$x = 6 - \frac{36}{7}$$

$$x = \frac{42 - 36}{7}$$
$$= \frac{6}{7}$$

$$\therefore \quad \operatorname{Point}\left(\frac{6}{7}, \frac{12}{7}\right)$$

So the corner points are $(2, 0), (6, 0), \left(\frac{6}{7}, \frac{12}{7}\right)$

$$(v) 5x + 7y \leq 35$$

$$-x + 3y \leq 3$$

$$x > 0$$

The associated equations are

$$5x + 7y = 35$$
 (1)
-x+3y = 3 (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $5x + 7(0) = 35$
 $5x = 35$
 $x = \frac{35}{5} = 7$

 \therefore Point is (7, 0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $5(0) + 7y = 35$
 $y = \frac{35}{7} = 5$

 \therefore Point is (0, 5)

x-intercept

Put
$$y = 0$$
 in eq. (2)
 $-x + 3(0) = 3$
 $-x = 3$
 $x = -3$

 \therefore Point is (-3, 0)

y-intercept

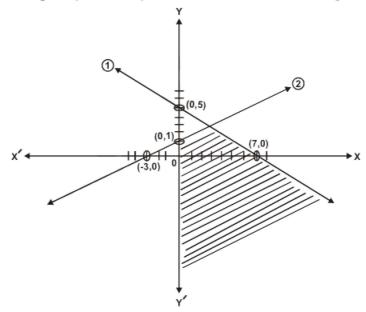
Put
$$x = 0$$
 in eq. (2)
-0+3y = 3

$$y = \frac{3}{3} = 1$$

 \therefore Point is (0, 1)

Test Point

Put
$$(0, 0)$$
 in
 $5x + 7y < 35$
 $5(0) + 7(0) < 35$
 $0 < 35$


Which is true.

 \therefore Graph of an inequality $5x + 7y \le 35$ will be towards the origin side.

Put
$$(0, 0)$$
 in $-x + 3y < 3$
 $-0 + 3(0) < 3$
 $0 < 3$

Which is true.

 \therefore Graph of an inequality $-x + 3y \le 6$ will be towards the origin side.

To find the intersection of both the equations solving eq. (1) & eq. (2)

Eq. (1) – Eq. (2) × 5, we get

$$5x + 7y = 35$$

$$-5x + 15y = 15$$

$$22y = 50$$

$$y = \frac{50}{22} = \frac{25}{11}$$

Put
$$y = \frac{25}{11}$$
 in eq. (2)
 $-x + 3\left(\frac{25}{11}\right) = 3$
 $\frac{75}{11} - 3 = x$
 $x = \frac{42}{11}$

$$\therefore$$
 Point $\left(\frac{42}{11}, \frac{25}{11}\right)$

So the corner points are (0,1), $\left(\frac{42}{11}, \frac{25}{11}\right)$

(vi)
$$5x + 7y \le 35$$

 $x - 2y \le 2$
 $x \ge 0$

The associated equations are

$$5x + 7y = 35$$
 (1)
 $x - 2y = 2$ (2)

x-intercept

Put
$$y = 0$$
 in eq. (1)
 $5x + 7(0) = 35$
 $x = \frac{35}{5} = 7$

 \therefore Point is (7,0)

y-intercept

Put
$$x = 0$$
 in eq. (1)
 $5(0) + 7y = 35$
 $x = \frac{35}{7} = 5$

 \therefore Point is (0, 5)

x-intercept

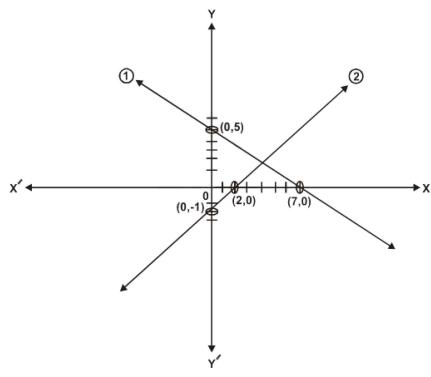
Put
$$y = 0$$
 in eq. (2)
 $x - 2(0) = 2$
 $x = 2$

 \therefore Point is (2,0)

y-intercept

Put
$$x = 0$$
 in eq. (2)
 $0-2y = 2$
 $y = \frac{2}{-2} = -1$

 \therefore Point is (0, -1)


Test Point

Put
$$(0, 0)$$
 in

$$5x + 7y < 35$$

$$5(0) + 7(0) < 35$$

Which is true.

482

 \therefore Graph of an inequality $5x + 7y \le 35$ will be towards the origin side.

Put (0, 0) in

$$x-2y < 2$$

$$0-2(0) \le 2$$

Which is true.

 \therefore Graph of an inequality $x - 2y \le 4$ will be towards the origin side.

To find the intersection of both is the equations solving eq. (1) & eq. (2)

Eq. (1) – Eq. (2) × 5, we get

$$5x + 7y = 35$$

$$-5x \mp 10y = -10$$

$$17y = 25$$

$$y = \frac{25}{17}$$

Put y = $\frac{25}{17}$ in eq. (2), we get

$$x-2\left(\frac{25}{17}\right) = 2$$

$$x - \frac{50}{17} = 2$$

$$x = 2 + \frac{50}{17}$$

$$x = \frac{34 + 50}{17}$$

$$x = \frac{84}{17}$$

$$\therefore \operatorname{Point}\left(\frac{84}{17}, \frac{25}{17}\right)$$

So the corner points are $\left(\frac{84}{17}, \frac{25}{17}\right)$, (0, 5), (0, -2)

Q.5: Graph the solution region of the following system of linear inequalities by shading.

$$(i) \qquad 3x - 4y \le 12$$

12 (ii)
$$3x - 4y \le 12$$

$$3x + 2y \ge 3$$

$$x + 2y \le 6$$

$$x + 2y \le 9$$

$$x + y \ge 1$$

(iii)
$$2x + y \le 4$$

$$(iv) \quad 2x + y \le 10$$

$$2x - 3y \ge 12$$

$$x + y \le 7$$

$$x + 2y \le 6$$

$$-2x + y \le 4$$

$$(v) \quad 2x + 3y \le 18$$

$$(vi) \quad 3x - 2y \ge 3$$

$$2x + y \le 10$$

$$x + 4y \le 12$$

$$-2x + y \le 2$$

$$3x + y \le 12$$

$$(i) \quad 3x - 4y \le 12$$

$$3x + 2y \ge 3$$

$$x + 2y < 9$$

$$3x - 4y = 12$$
 (1)

$$3x + 2y = 3$$
 (2)

$$x + 2y = 9$$
 (3)

x-intercept

Put y = 0 in eqs. (1), (2) and (3)

$$3x - 4(0) = 12$$

$$3x = 12$$

$$x = \frac{12}{3} = 4$$

$$3x = 3$$

$$x = \frac{3}{3} = 1$$

$$\therefore$$
 Point is $(1,0)$

484

$$x = 9$$

x + 2(0) = 9 x = 9∴ Point is (9, 0)

y-intercept

Put x = 0 in eqs. (1), (2) and (3)

$$3(0) - 4y = 12$$

$$y = \frac{12}{-4} = -3$$

$$\therefore$$
 Point is $(0, -3)$

3(0) + 2y = 3

$$y = \frac{3}{2}$$

$$y = \frac{3}{2}$$

$$\therefore \text{ Point is } \left(0, \frac{3}{2}\right)$$

$$y = \frac{9}{2}$$

0 + 2y = 9 $y = \frac{9}{2}$ $\therefore \text{ Point is } \left(0, \frac{9}{2}\right)$

Test Point

Put (0,0) in

$$3x - 4y \le 12$$

$$3(0) - 4(0) < 12$$

Which is true.

 \therefore Graph of an inequality $3x - 4y \le 12$ will be towards the origin side.

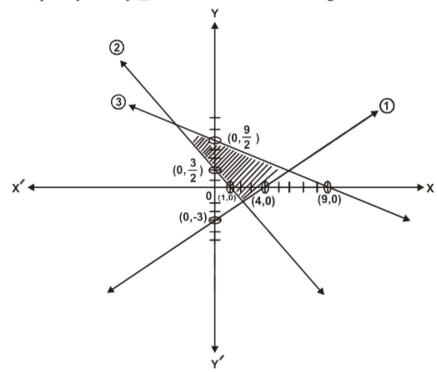
Put (0, 0) in

$$3x + 2y > 3$$

$$3(0) + 2(0) > 3$$

which is false.

 \therefore Graph of an inequality $3x + 2y \ge 3$ will not be towards the origin side.


Put (0,0) in

$$x + 2y < 9$$

$$0 + 2(0) < 9$$

Which is true.

 \therefore Graph of an inequality $x + 2y \le 9$ will be towards the origin side.

(ii)
$$3x - 4y \le 12$$

$$x + 2y \le 6$$

$$x + y \ge 1$$

The associated equations are

$$3x - 4y = 12$$
 (1)

$$x + 2y = 6$$
 (2)

$$x + y = 1$$
 (3)

x-intercept

Put y = 0 in equations (1), (2) and (3)

$$3x - 4(0) = 12$$

$$x + 2(0) = 6$$

$$3x = 12$$

$$\mathbf{x} = \mathbf{x}$$

$$x = 1$$

 \therefore Point is (4, 0)

 \therefore Point is (6,0)

486

 \therefore Point is (1,0)

y-intercept

Put x = 0 in equations (1), (2) and (3)

$$3(0) - 4y = 12$$

$$y = \frac{12}{-4} = -3$$

$$0 + 2y = 6$$

$$y = \frac{6}{2} = 3$$

$$\therefore \text{ Point is } (0, 3)$$

$$0 + y = 1$$

y = 1 \therefore Point is (0, 1)

 \therefore Point is (0, -3)

Test Point

Put (0, 0) in

$$3x - 4y < 12$$

$$3(0) - 4(0) \le 12$$

Which is true.

 \therefore Graph of an inequality $3x - 4y \le 12$ will be towards the origin side.

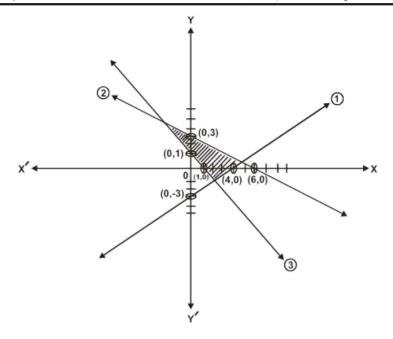
Put (0, 0) in

$$x + 2y < 6$$

$$0 + 2(0) < 6$$

Which is true.

 \therefore Graph of an inequality $x + 2y \le 6$ will not be towards the origin side.


Put (0, 0) in

$$x + y > 1$$

$$0+0 > 1$$

Which is false.

 \therefore Graph of an inequality $x + y \ge 1$ will not be towards the origin side.

(iii)
$$2x + y \le 4$$
$$2x - 3y \ge 12$$

$$x + 2y \le 6$$

$$2x + y = 4$$
 (1)

$$2x - 3y = 12$$
 (2)

$$x + 2y = 6$$
 (3)

x-intercept

Put y = 0 in equations (1), (2) and (3)

$$2x + 0 = 4$$

$$x = \frac{4}{2} = 2$$

$$2x - 3(0) = 12$$

$$2x = 12$$

$$x = \frac{12}{2} = 6$$

$$\therefore$$
 Point is $(6,0)$

$$x + 2(0) = 6$$

$$x = 6$$

 \therefore Point is (6,0)

y-intercept

Put x = 0 in equations (1), (2) and (3)

$$2(0) + y = 4$$

$$v = 4$$

$$\therefore$$
 Point is $(0, 4)$

$$2(0) - 3y = 12$$

$$\therefore$$
 Point is $(0, -4)$

$$0 + 2y = 6$$

$$y = \frac{6}{2} = 3$$

 \therefore Point is (0,3)

Test Point

Put
$$(0, 0)$$
 in

$$2x + y < 4$$

$$2(0) + 0 < 4$$

Which is true.

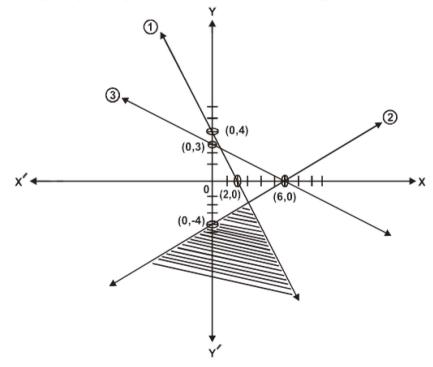
 \therefore Graph of an inequality $2x + y \le 4$ will be towards the origin side.

Put
$$(0, 0)$$
 in

$$2x - 3y \ge 12$$

$$2(0) - 3(0) \ge 12$$

Which is false.


 \therefore Graph of an inequality $2x - 3y \ge 12$ will not be towards the origin side.

$$x + 2y < 6$$

$$0 + 2(0) < 6$$

Which is true.

 \therefore Graph of an inequality $x + 2y \le 6$ will be towards the origin side.

(iv)
$$2x + y \le 10$$

 $x + y \le 7$

$$-2x+y\leq 4$$

$$2x + y = 10$$
 (1)

$$x + y = 7 \dots (2)$$

$$-2x + y = 4$$
 (3)

x-intercept

Put y = 0 in equations (1), (2) and (3)

$$2x + 0 = 10$$

$$x = \frac{10}{2} = 5$$

$$\therefore$$
 Point is $(5,0)$

$$x + 0 = 7$$

$$x = 7$$

$$-2x+0=4$$

$$-2x + 0 = 4$$

$$x = \frac{4}{-2} = -2$$

$$\therefore \text{ Point is } (-2, 0)$$

$$\therefore$$
 Point is $(-2, 0)$

y-intercept

Put x = 0 in equations (1), (2) and (3)

$$2(0) + y = 10$$

$$y = 10$$

$$\therefore$$
 Point is $(0, 10)$

$$0 + y = 7$$

$$v = 7$$

$$-2(0) + y = 4$$

$$y = 4$$

$$\therefore$$
 Point is $(0, 4)$

Test Point

Put (0, 0) in

$$2x + y < 10$$

$$2(0) + 0 < 10$$

Which is true.

 \therefore Graph of an inequality $2x + y \le 10$ will be towards the origin side.

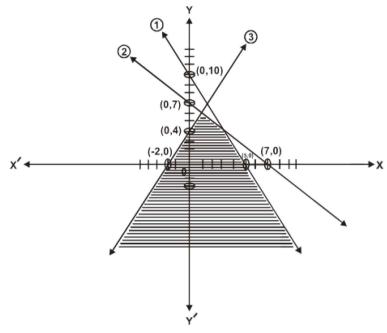
Put (0, 0) in

$$x + y < 7$$

$$0 + 0 < 7$$

Which is true.

 \therefore Graph of an inequality $x + y \le 7$ will be towards the origin side.


Put (0,0) in

$$-2x+y<4$$

$$-2(0)+0<4$$

Which is true.

 \therefore Graph of an inequality $-2x + y \le 4$ will be towards the origin side.

490

$$(v) \quad 2x + 3y \le 18$$

$$2x + y \le 10$$

$$-2x+y\leq 2$$

The associated equations are

$$2x + 3y = 18$$
 (1)

$$2x + y = 10$$
 (2)

$$-2x + y = 2$$
 (3)

x-intercept

Put y = 0 in equations (1), (2) and (3)

$$2x + 3(0) = 18$$

$$2x = 18$$

$$x = \frac{18}{2} = 9$$

$$2x + 0 = 10$$

$$2x = 10$$

$$x = \frac{10}{2} = 5$$

$$\therefore$$
 Point is $(5,0)$

$$-2x + 0 = 2$$

$$x = \frac{2}{-2} = -1$$

$$\therefore$$
 Point is $(-1, 0)$

y-intercept

Put x = 0 in equations (1), (2) and (3)

$$2(0) + 3y = 18$$

 $3y = 18$
 $y = \frac{18}{3} = 6$

$$2(0) + y = 10$$
 $-2(0) + y = 2$
 $y = 10$ $y = 2$
 \therefore Point is $(0, 10)$ \therefore Point is $(0, 2)$

491

$$\begin{array}{rcl}
-2(0) + y &=& 2 \\
y &=& 2
\end{array}$$

 \therefore Point is (0, 6)

Test Point

Put
$$(0,0)$$
 in

$$2x + 3y < 18$$

 $2(0) + 3(0) < 18$
 $0 < 18$

Which is true.

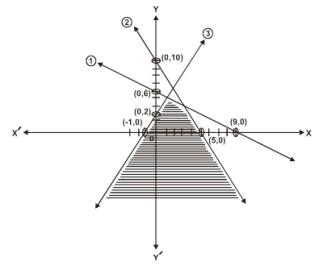
 \therefore Graph of an inequality $2x + 3y \le 18$ will be towards the origin side.

$$2x + y < 10$$

$$2(0) + 0 < 10$$

Which is true.

 \therefore Graph of an inequality $2x + y \le 10$ will be towards the origin side.


Put
$$(0, 0)$$
 in

$$-2x + y < 2$$

$$-2(0)+0<2$$

Which is true.

 \therefore Graph of an inequality $-2x + y \le 2$ will be towards the origin side.

(vi)
$$3x-2y \ge 3$$

$$x + 4y < 12$$

$$3x + y \le 12$$

$$3x - 2y = 3$$
 (1)

$$x + 4y = 12 \dots (2)$$

$$3x + y = 12$$
 (3)

x-intercept

Put y = 0 in equations (1), (2) and (3)

$$3x - 2(0) = 3$$

$$3x = 3$$

$$3x = 3$$

$$x = \frac{3}{3} = 1$$

$$x = 12$$

$$\therefore \text{ Point is } (12, 0)$$

$$x + 4(0) = 12$$

$$x = 12$$

492

$$3x + 0 = 12$$

$$x = \frac{12}{3} = 4$$

 \therefore Point is (4,0)

y-intercept

Put x = 0 in equations (1), (2) and (3)

$$3(0) - 2y = 3$$

 \therefore Point is (1,0)

$$y = \frac{3}{-2}$$

$$\therefore$$
 Point is $\left(0, \frac{-3}{2}\right)$

$$0 + 4y = 12$$

$$y = \frac{12}{4} = 3$$
 $y = 12$
 $y = 12$

$$\therefore$$
 Point is $(0,3)$

$$3(0) + y = 12$$

$$y = 12$$

Test Point

Put (0, 0) in

$$3x - 2y > 3$$

$$3(0) - 2(0) > 3$$

Which is false.

 \therefore Graph of an inequality $3x - 2y \ge 3$ will not be towards the origin side.

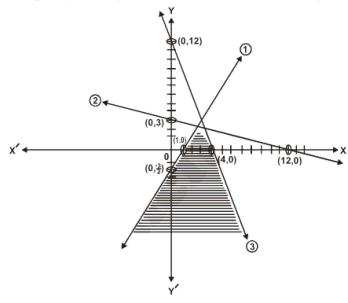
Put (0,0) in

$$x + 4y < 12$$

$$0 + 4(0) < 12$$

Which is true.

Graph of an inequality $x + 4y \le 12$ will be towards the origin side.


Put
$$(0, 0)$$
 in

$$3x + y < 12$$

$$3(0) + 0 < 12$$

Which is true.

Graph of an inequality $3x + y \le 12$ will be towards the origin side.

EXERCISE 5.2

Graph the feasible region of the following system of linear inequalities and Q.4: find the corner points in each case.

$$(i) 2x - 3y \le 6$$

$$(ii) x+y \le 5$$

(iii)
$$x + y \le 5$$

$$2x + 3y \le 12$$

$$x + y \le 5$$

$$-2x + y \le 2$$

$$x \ge 0, y \ge 0$$

$$-2x+y\geq 2$$

$$x \ge 0$$
 , $y \ge 0$

$$x \geq 0, y \geq 0$$

$$-2x + y \ge 2$$

$$x \ge 0, y \ge 0$$

$$(iv) 3x + 7y \le 21$$

$$(v) 3x +$$

(v)
$$3x + 2y \ge 6$$
 (vi) $5x + 7y \le 35$

$$x - y \leq 3$$

$$x + y \le 4$$

$$x - 2y \le 4$$

$$x \ge 0$$
 , $y \ge 0$

$$x \ge 0$$
, $y \ge 0$

$$x \ge 0 , y \ge 0 \qquad x \ge 0 , y \ge 0$$