constant is

CIRCULAR MOTION

1.		n a body is moving along a circular pat otion is called:	h, it c	overs a certain angle in given time. Such a type
	(a)	Linear motion	(b)	Angular motion
	<i>(</i>)	T7'1	(1)	D / /

Each question has four possible answers, encircled the correct answer:

	(a)	Linear motion	(b)	Angular motion			
	(c)	Vibratory motion	(d)	Rotatory motion			
2.	When a body moves in such a way that its distance from the mean position remains called:						
	(a)	Linear motion	(b)	Circular motion			
	(c)	Vibratory motion	(d)	Rotatory motion			
3.	The angle through which a body moves is called:						
	(a)	Angular displacement	(b)	Angular velocity			
	(c)	Angular acceleration	(d)	None of these			
4.9 The SI unit of angular displacement is:							
	(a)	Metre	(b)	Kilometre			
	(c)	Radian	(d)	None of these			
5.	The angle subtended at the center of a circle by an arc equal to its radius is called:						
	(a)	One radian	(b)	One degree			
	(c)	One rotation	(d)	None of these			
6. ♀ On		e radian is equal to:					
	(a)	47.3°	(b)	57.3°			
	(c)	67.3°	(d)	59.3°			
7.	The linear acceleration of bodies moving in circular path is:						
	(a)	Constant		Negative			
	(c)	Positive	(d)	Zero			

(a) Constant
(b) Negative
(c) Positive
(d) Zero
8. The angular displacement is assign positive sign when the rotation is:
(a) Clockwise
(b) Anti-clock wise
(c) Perpendicular
(d) Parallel

9. The direction associated with angular displacement is given by:

(a) Left hand rule (b) Head to tail rule

(c) Right hand rule (d) None of these

180°

(d)

60°

(c)

The rate of change of angular velocity is called:

(a) Angular velocity

(b) Angular acceleration

(c) Angular displacement

(d) None of these

21. SI unit of angular acceleration is:

(a) rad/s^2

20.

(b) rad/s

(c) $rad.s^2$

(d) rad.s

22. The relation between linear acceleration and angular acceleration is:

(a) $\overrightarrow{\alpha} = \overrightarrow{a} \times \overrightarrow{r}$

(b) $\overrightarrow{a} = \overrightarrow{r} \times \overrightarrow{\alpha}$

(c) $\overrightarrow{r} = \overrightarrow{a} \times \overrightarrow{\alpha}$

(d) $\overrightarrow{a} = \overrightarrow{\alpha} \times \overrightarrow{r}$

23. The dimensions of angular acceleration are:

(a) $[LT^{-2}]$

(b) $[T^{-2}]$

(c) $[LT^{-1}]$

(d) $[T^{-3}]$

24. The relation between linear velocity and angular velocity is:

(a) $\overrightarrow{V} = \overrightarrow{r} \times \overrightarrow{\omega}$

(b) $\overrightarrow{V} = \overrightarrow{\omega} \times \overrightarrow{r}$

(c) $\overrightarrow{\omega} = \overrightarrow{V} \times \overrightarrow{r}$

(d) $\overrightarrow{r} = \overrightarrow{V} \times \overrightarrow{\omega}$

The dimensions of angular velocity are:

(a) $[LT^{-1}]$

25.

(b) [LT]

(c) $[LT^{-2}]$

(d) $[T^{-1}]$

26. If a rotating body is moving anti-clockwise, the direction of angular velocity is:

(a) Towards the centre

(b) Along the linear velocity

(c) Away from the centre

(d) Perpendicular to both radius and linear velocity

27. Angular acceleration is produced due to:

(a) Centripetal force

(b) Torque

(c) Force

(d) None of these

28. The period of circular motion is given by:

(a) $T = \frac{2\pi}{\omega}$

(b) $T = \frac{\omega}{2\pi}$

(c) $T = 2\pi\omega$

(d) None of these

29. The force needed to bend the normally straight path of particle into a circular path is called:

(a) Inertia

(b) Torque

(c) Centripetal force

(d) None of these

30. When a body is moving in a circle of radius r with constant linear velocity V, its centripetal force is:

(a) $\frac{\text{mv}}{r}$

(b) $\frac{\text{m v}}{\text{r}}$

(c) $\frac{mv}{r^2}$

(d) None of these

OBJE	CTIVE	E PHYSICS PART-I		126					
31.	Who	When a body moves in a circle of radius r with angular speed ω, its centripetal force is:							
	(a)	$\frac{m\omega}{r}$	(b)	$mr\omega^2$					
	(c)	$\frac{\mathrm{mr}}{\omega^2}$	(d)	$\frac{m\omega^2}{r}$					
32. 9	A be	A body is moving in a circle of radius r with constant speed V, its centripetal acceleration is:							
	(a)	$\frac{\mathbf{v}^2}{\mathbf{r}}$	(b)	v^2r					
	(c)	$\frac{r}{v^2}$	(d)	$\frac{\mathbf{v}}{\mathbf{r}}$					
33.		A body is moving in a circle of radius r with constant angular velocity ω , its centripetal acceleration is:							
	(a)	$\frac{\omega}{r}$	(b)	ωr					
	(c)	ω^2 r	(d)	ωr^2					
34.	4. The force required to keep a body into a circle is called:								
	(a)	Centrifugal force	(b)	Centripetal force					
	(c)	Gravitational force	(d)	None of these					
35.	A body is moving in a circle at constant speed. Which of the following statement is correct:								
	(a)	(a) There is no force acting away from the centre of the circle							
	(b)	(b) There is no force acting towards the centre of the circle							
	(c)	There is no acceleration							
	(d)	None of these							
36.	The	vectorial form of centripetal force is:							
	(a)	$-m\omega^2\overrightarrow{r}$	(b)	$m\omega^2\overrightarrow{r}$					
	(c)	$-m\omega \overrightarrow{r}$	(d)	$m^2\omega \overrightarrow{r}$					
37.	An	An object is traveling in a circle with constant speed. Its acceleration is constant in:							
	(a)	Direction only	(b)	Magnitude only					
	(c)	Both magnitude and direction	(d)	None of these					
38.		A body of mass 4 kg moves along a circle of radius 2m with a constant speed of 4 m/s. The centripetal force is:							
	(a)	32 N	(b)	16 N					
	(c)	20 N	(d)	64 N					
39.	In c	ase of planets, the necessary acceleratio	n is p	rovided by:					

Centripetal force

None of these

(b)

(d)

Coulombs force

Gravitation force

(a)

(c)

The angular momentum of a body about a fixed point is conserved if its velocity:

(a) Increases

50.

(b) Decreases

(c) Constant

(d) None of these

51. Angular momentum of a rigid body is equal to:

(a) Ιω

(b) Ια

(c) $\frac{1}{2}$ I ω

(d) $\frac{1}{2}I^2\omega$

52. In rotational motion, the quantity which plays the same role as the inertial mass in term of linear motion is known as:

(a) Angular momentum

(b) Linear momentum

(c) Momentum of inertia

(d) Torque

53. The value of angular momentum is maximum when θ is:

(a) 60°

(b) 45°

(c) 0°

(d) 90°

54. The angular momentum $\stackrel{\rightarrow}{L}$ in terms of angular velocity ω is equal to:

(a) $mr^2\omega$

(b) $m^2 r \omega$

(c) $mr\omega^2$

(d) $m^2r^2\omega^2$

55. The product of the mass m of the rotating body and the square of radius of gyration is called:

(a) Moment of inertia

(b) Torque

(c) Linear momentum

(d) None of these

56. Mathematically moment of inertia is equal to:

(a) $I = mr^2$

(b) I = mr

(c) $I = m^2 r$

(d) $I = m^2 r^2$

57. The moment of inertia depends upon:

- (a) Angular momentum
- **(b)** Mass of the body and its angular speed
- (c) Mass of the body and its radius
- (d) Mass as well as its distribution with respect to axis of rotation

58. Moment of inertia of a thin rod about mid length is:

(a) $I = \frac{1}{12} \text{ mL}^2$

(b) $I = \frac{2}{5} \text{ mr}^2$

(c) $I = \frac{1}{3} \text{ mr}^2$

(d) $I = \frac{1}{2} mr^2$

59.9 Moment of inertia of a hoop about its axis is:

(a) $I = \frac{1}{3} \text{ mr}^2$

(b) $I = \frac{1}{2} mr^2$

(c) $I = \frac{2}{3} \text{ mr}^2$

(d) $I = \frac{2}{5} mr^2$

OBJE	CTIVE	PHYSICS PART-I		129				
60.	The	The moment of inertia of a body comes in action in:						
	(a)	Circular motion	(b)	Straight line motion				
	(c)	Curved path	(d)	None of these				
61. 9	The	The SI unit of angular momentum is:						
	(a)	kgm ³	(b)	kgm				
	(c)	kgm^2	(d)	kgm^{-2}				
62.	The physical quantity which plays the same part in angular motion as mass does in linear motion is called:							
	(a)	Moment of inertia	(b)	Momentum				
	(c)	Torque	(d)	None of these				
63.	The	physical quantity which produces angu	lar ac	celeration is known as:				
	(a)	Force	(b)	Torque				
	(c)	Inertia	(d)	None of these				
64.	Mor	Moment of inertia of a solid disc about its axis is:						
	(a)	$\frac{1}{2}$ mr ²	(b)	$\frac{2}{5} \text{ mr}^3$ $\frac{1}{3} \text{ mr}^2$				
	(c)	$\frac{2}{3}$ mr ²	(d)	$\frac{1}{3}$ mr ²				
65.	Mor	Moment of inertia of a sphere is:						
	(a)	$\frac{1}{2} \text{ mr}^2$	(b)	$\frac{2}{5}$ mr ³				
	(c)	$\frac{2}{5}$ mr ²	(d)	$\frac{1}{3}$ mr ²				
66.	The	The dimensions of moment of inertia are:						
	(a)	$[ML^2]$	(b)	$[\mathrm{ML}^{-2}]$				
	(c)	$[ML^{-1}]$	(d)	$[M^2L]$				
67.	The force and torque are analogues to:							
	(a)	Each other	(b)	Moment of inertia				
	(c)	Velocity	(d)	None of these				
68.	The total weight of the body acts at:							
	(a)	its center of gravity	(b)	its centre				
	(c)	its one end	(d)	its other end				
69.	The center of gravity is also called:							
	(a)	Centre of body	(b)	Centre of mass				
	(c)	Both (a) and (b)	(d)	None of these				
70.	The acceleration due to gravity:							
	(a)	Same value at every place	(b)	Same value everywhere on the surface of earth				
	(c)	Varies with altitude	(d)	None of these				

OBJE	CTIVE	PHYSICS PART-I		130					
71.	The	The value of 'g' at the center of the Earth is:							
	(a)	Infinite	(b)	Double					
	(c)	Zero	(d)	None of these					
72.		Law of conservation of angular momentum states that if no ——— acts on a system, the total angular momentum of the system remains constant:							
	(a)	External torque	(b)	External couple					
	(c)	External force	(d)	None of these					
73.		The axis of rotation of a body will not change its orientation unless an external ———— causes it to do so:							
	(a)	Force	(b)	Torque					
	(c)	Work	(d)	Energy					
74.	A cı	ricketer spins the ball before bowling to							
	(a)	Give it downward deflection	(b)	Give it upward deflection					
	(c)	Keep it straight	(d)	None of these					
75.		elevator is accelerated downward with a it will be:	accele	ration a, the apparent weight of a body of mass					
	(a)	m(a-g)	(b)	m(g+a)					
	(c)	m(g-a)	(d)	mg					
76. An elevator is accelerated upward with acceleration a, the a in it will be:			ion a, the apparent weight of a body of mass m						
	(a)	m(a-g)	(b)	m(a+g)					
	(c)	m(g-a)	(d)	mg					
77.		If the rope of an elevator moving downward with acceleration a breaks, the apparent weight of a body of mass m in it will be:							
	(a)	m(a-g)	(b)	m(a+g)					
	(c)	m(g-a)	(d)	Zero					
78.	The	K.E of a disc of mass m rolling down o	n an i	ncluded plane is:					
	(a)	$\frac{1}{2}$ mV ²	(b)	$\frac{1}{4}$ mv ²					
	(c)	$\frac{3}{4}$ mv ²	(d)	None of these					
79.	The	The rotation K.E of any hoop of radius r is given by:							
	(a)	$\frac{1}{2} \text{ mr}^2 \omega^2$	(b)	$\frac{1}{2} r\omega^2$					
	(c)	$\frac{1}{2} r^2 \omega^2$	(d)	None of these					

80. Suppose a body of cylindrical shape is called down on an inclined plane of height h. It contains:

(a) Translation K.E

(b) Rotational K.E

(c) Both (a) and (b)

(d) None of these

81. Speed of hoop at the bottom can be given by:

(a) $V = \sqrt{gh}$

(b) $v = \sqrt{2gh}$

(c) $v = \sqrt{\frac{3}{4} gh}$

(d) None of these

82. Orbital velocity of a satellite orbiting closer to the planet is given by:

(a) $v = \sqrt{\frac{GM}{R}}$

(b) $v = \sqrt{\frac{GMm}{R}}$

(c) $V = \sqrt{gR}$

(d) None of these

83. If the earth stops rotating weight of a body on the equator:

(a) Increases

(b) Remains constant

(c) Decreases

84.

85.

(d) None of these

A body becomes weightless:

- (a) Spaceship orbiting the earth
- **(b)** Outside the field free region

(c) On the earth's centre

(d) All of above

The axis of rotation of a rotating body in the absence of external torque:

(a) Continuously changes

(b) Remain fixed in direction

(c) Both (a) and (b)

(d) None of these

86. The number of satellite included in the Global positioning system is:

(a) 20

(b) 48

(c) 24

(d) None of these

87. Orbital speed of a satellite at large enough height h above the earth's surface is:

(a) \sqrt{gR}

(b) $\sqrt{\frac{GM}{R+1}}$

(c) $\sqrt{\frac{GM}{R}}$

(d) None of these

88. In a spaceship orbiting the earth, the apparent weight of the body in it is:

- (a) Less than its real weight
- **(b)** Greater than its real weight

(c) Weightlessness

(d) None of these

89. One communication satellite covers:

(a) 240 longitudinal lines

(b) 360 longitudinal lines

(c) 120 longitudinal lines

(d) None of these

90.

International telecommunication in satellite organization (INTELSAT)
--

- (a) Operates at microwave frequency 4.611 and 149 Hz
- **(b)** Has capability of 30,000 two-way telephone circuits
- (c) Provides facility of three T.V channels
- (d) All of above
- **91.** Height of the closest orbit of the satellite above the earth is:
 - (a) 300 km

(b) 250 km

(c) 500 km

- (d) 400 km
- **92.** Radius of the geo-stationary orbit from the earths center is:
 - (a) $4.24 \times 10^4 \text{ km}$

(b) $3.23 \times 10^4 \text{ km}$

(c) $4.23 \times 10^3 \text{ km}$

- (d) None of these
- **93.** Height of geo-stationary satellite above the equator is:
 - (a) 40,000 km

(b) 24,000 km

(c) 30,000 km

- (d) 36,000 km
- **94.** Entire populated earth, surface is covered by:
 - (a) Four

(b) Three

(c) Two

95.

96.

- (d) None of these
- The geo-stationary satellite are used for:
- (a) World communications

(b) Weather observations

(c) Navigation

- (d) All of above
- Einstein theory was considered as a:
 - (a) Scientific trump

(b) Simple trump

(c) Natural trump

- (d) None of these
- **97.** Which theory of gravitation is better:
 - (a) Newton

(b) Einstein

(c) Compton

- (d) Plank
- **98.** The time period T of the artificial satellite is given by:
 - $(a) \quad T = \frac{2\pi v}{R}$

(b) $T = \frac{2v}{\pi R}$

(c) $T = \frac{2\pi R}{V}$

(d) None of these

- **99.** 1° = radian.
 - (a) 0.01745

(b) 57

(c) 0.1745

- **(d)** 0.2
- **100.** If r = 1 m and $\theta = 1^{\circ}$ then what is value of S:
 - (a) 0.01745 m

(b) 1 m

(c) 2 m

(d) None

111. To create artificial gravity spaceship rotates with frequency:

(a) $2\pi\sqrt{\frac{g}{R}}$

(b) $\frac{1}{2\pi} \sqrt{\frac{R}{g}}$

(c) $\frac{1}{2\pi}\sqrt{\frac{g}{R}}$

(d) All

112. The Earth rotates on its axis once a day. Suppose by some process the Earth contracts so that its radius is only half as large as at present. The Earth would complete its rotation in:

(a) 24 h

(b) 6 h

(c) 12 h

(d) 18 h

113. The minute hand of a large clock is 3.0 m long. What is its mean angular speed?

(a) $1.4 \times 10^{-4} \text{ rad s}^{-1}$

(b) $1.7 \times 10^{-3} \text{ rad s}^{-1}$

(c) $5.2 \times 10^{-3} \text{ rad s}^{-1}$

(d) $1.0 \times 10^{-1} \text{ rad s}^{-1}$

114. When an aircraft is moving in a horizontal plane at a constant speed of 650 ms⁻¹, its turning circle has a radius of 80 km. What is the ratio of the centripetal force to the weight of the aircraft?

(a) 8.3×10^{-4}

(b) 0.54

(c) 1.9

(d) 52

115. An object travels at constant speed around a circle of radius 1.0 m in 1.0 s. What is the magnitude of its acceleration?

(a) Zero

(b) 1.0 ms^{-2}

(c) $2\pi \text{ ms}^{-2}$

(d) $4\pi^2 \text{ ms}^{-2}$

116. A ball of mass 0.10 kg is attached to a string and swung in a vertical circle of radius 0.50 m, as shown. Its speed at the top of the circle is 6.0 ms⁻¹. (Take g as 10 ms⁻²)

6.0 ms⁻¹ 0.10 kg

What is the tension in the string at this moment?

(a) 1.0 N

(b) 6.2 N

(c) 7.2 N

(d) 8.2 N

117. An object on the end of a spring oscillates with simple harmonic motion of angular frequency 2.0 rad s^{-1} . What is the period of the oscillation?

(a) 0.080 s

(b) 0.32 s

(c) 0.50 s

(d) 3.1 s

118. An object is travelling in a circle of radius r with angular velocity ω and speed v. Which expression gives the centripetal acceleration?

(a) rω

(b) νω

(c) v/r

(d) v/r^2

ANSWERS

1.	(b)	2.	(b)	3.	(a)	4.	(c)
5.	(a)	6.	(b)	7.	(d)	8.	(b)
9.	(c)	10.	(b)	11.	(a)	12.	(a)
13.	(c)	14.	(b)	15.	(c)	16.	(b)
17.	(a)	18.	(a)	19.	(b)	20.	(b)
21.	(a)	22.	(d)	23.	(b)	24.	(a)
25.	(d)	26.	(d)	27.	(b)	28.	(a)
29.	(c)	30.	(a)	31.	(b)	32.	(a)
33.	(c)	34.	(b)	35.	(b)	36.	(b)
37.	(b)	38.	(a)	39.	(c)	40.	(d)
41.	(b)	42.	(c)	43.	(a)	44.	(d)
45.	(d)	46.	(c)	47.	(a)	48.	(c)
49.	(d)	50.	(b)	51.	(a)	52.	(c)
53.	(d)	54.	(a)	55.	(a)	56.	(a)
57.	(d)	58.	(a)	59.	(b)	60.	(a)
61.	(c)	62.	(a)	63.	(b)	64.	(a)
65.	(c)	66.	(a)	67.	(a)	68.	(a)
69.	(b)	70.	(c)	71.	(c)	72.	(c)
73.	(b)	74.	(b)	75.	(c)	76.	(b)
77.	(d)	78.	(b)	79.	(a)	80.	(c)
81.	(a)	82.	(c)	83.	(c)	84.	(d)
85.	(b)	86.	(c)	87.	(b)	88.	(c)
89.	(c)	90.	(d)	91.	(d)	92.	(a)
93.	(d)	94.	(b)	95.	(d)	96.	(a)
97.	(b)	98.	(c)	99.	(a)	100.	(a)
101.	(b)	102.	(b)	103.	(b)	104.	(b)
105.	(b)	106.	(b)	107.	(a)	108.	(d)
109.	(b)	110.	(b)	111.	(c)	112.	(b)
113.	(b)	114.	(b)	115.	(d)	116.	(b)
117.	(d)	118.	(b)	119.	(a)	120.	(d)
121.	(b)	122.	(c)	123.	(c)	124.	(a)
125.	(a)	126.	(b)	127.	(c)		