Exercise 6.3 (Solutions) rage # 272
Calculus and Analytic Geometry, MATHEMATICS 12

Question # 1
Prove that normal lines of a circle pass through the centre of the circle.
Solution Consider a circle with centre at origin and radius r.
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Clearly centre of circle (0,0) satisfies (i), hence normal lines of the circles passing
through the centre of the circle.

Question # 2

Prove that the straight line drawn from the centre of a circle perpendicular to a
tangent passes through the point of tangency.

Solution Consider a circle with centre at origin and

radius r.
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Now equation of line perpendicular to tangent passing through centre (0,0)
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Clearly the point of tangency (x,, y,) satisfy (1), hence the straight line drawn from

the centre of circle perpendicular to a tangent passes through the point of tangency.

Question # 3
Prove that the mid-point of the hypotenuse of a right triangle is the circumcentre of
the triangle.

Solution  Let OAB be aright triangle with ‘ 0A| =a, |OB ‘ =b.
Then the coordinates of Aand B are (a,0) and (0,b) respectively.
Let C be the mid-point of hypotenuse AB. Then

coordinate of C = (QZO,%) = (E,éj.
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Since ]CA| = |CB| = ‘CO , therefore C 1s the centre of the circumcircle.

Hence the mid-point of the hypotenuse of a right triangle is the circumcentre of the
triangle.

Mean proportional
Let a,b and ¢ be three numbers. The number b is said to be mean proportional

between a and b if a,b,c are in geometric means or
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Question #4
Prove that the perpendicular dropped from a y
point of a circle on a diameter is a mean

proportional between the segments into which ey
it divides the diameter.
Solution  Consider a circle of radius r and
centre (0,0), then equation of circle
5 B o] ¢ A x
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Let A and B are end-points of diameter of
circle along x-axis, then coordinate of A and B
are (—r,0) and (0, r) respectively.

Also let P(a,b) be any point on circle and
Lar from P cuts diameter at C. Then coordinate of C are (a,0).

Since P(a,b) lies on a circle, therefore

Now

ACI = \/(r+a)2—(()—0)2 = r+a.
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PC| = J(a—a) +(b-0)" = JO+b* = b.

Now

AC|-ICB| = (r+a)(r—a)

R
= a’+b"-a’ from (1)
= p* = |PC|
= |acl|cB| = |pc||pc| = [ACl o 1PC
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= IPCI 1S a mean proportional to |AC I and ICBI.




