(IV) Circle

Equations of tangent in different forms

Point form: (i)

Equation of tangent to the circle at (x_1, y_1) is $xx_1 + yy_1 = a^2$

Slope form: (ii)

> Equation of tangent is terms of slope 'm' is $y = mx \pm a\sqrt{1 + m^2}$ $(: c^2 = a^2 (1 + m^2))$

Equations of Normal

Parobola $y^2 = 4ax$ is at (x_1, y_1) (i)

$$y - y_1 = \frac{-y_1}{2a}(x - x_1)$$

Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at (x_1, y_1) is (ii)

$$\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$$

Hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at (x_1, y_1) is (iii)

$$\frac{xa^2}{x_1} + \frac{yb^2}{y_1} = a^2 + b^2$$

EXERCISE 6.7

Find equations of tangent and normal to each of the following at the Q.1: indicated point.

(i)
$$y^2 = 4ax$$
 at $(at^2, 2at)$

Solution:

Equation of tangent at (at², 2at) is

$$yy_1 = 2a(x + x_1)$$

$$y(2 at) = 2a (x + at^2)$$

$$2ayt = 2ax + 2a^2t^2$$

$$2ayt = 2a(x + at^2)$$

$$2ayt = 2a(x + at^2)$$

$$yt = x + at^2$$

And equation of normal at (at², 2at) is

$$y - y_1 = \frac{-y_1}{2a} (x - x_1)$$

$$y - 2at = \frac{-2at}{2a} (x - at^2)$$

$$y - 2at = -tx + at^3$$

$$tx + y - 2at - at^3 = 0$$
(ii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{at } (a \cos \theta, b \sin \theta)$$

Solution:

Equation of tangent
$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

$$\frac{x(a\cos\theta)}{a^2} + \frac{y(b\sin\theta)}{b^2} = 1$$

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

and equation of normal

$$\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$$

$$\frac{a^2x}{a\cos\theta} - \frac{b^2y}{b\sin\theta} = a^2 - b^2$$

$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2 \quad \text{ax } \sec\theta - \text{by } \csc\theta = a^2 - b^2$$

(iii)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at $(a \sec\theta, b \tan\theta)$

Solution:

Equation of tangent

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

$$\frac{x \operatorname{a} \sec \theta}{a^2} - \frac{y \operatorname{b} \tan \theta}{b^2} = 1$$

$$\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1$$

And equation of normal

$$\frac{xa^2}{x_1} + \frac{yb^2}{y_1} = a^2 + b^2$$

$$\frac{xa^2}{a \sec \theta} + \frac{yb^2}{b \tan \theta} = a^2 + b^2$$

$$\frac{xa}{\sec \theta} + \frac{yb}{\tan \theta} = a^2 + b^2$$

$$OR \quad x a \cos \theta + y b \cot \theta = a^2 + b^2$$

Write equation of the tangent to the given conic at the indicated point O.2:

(i) $3x^2 = -16y$ at the points whose ordinate is -3

Solution:

$$3x^{2} = -16y$$
(1)
Put $y = -3$ in
 $3x^{2} = -16(-3)$
 $3x^{2} = 48 \Rightarrow x^{2} = 16$
 $\Rightarrow x = \pm 4$

Hence points are

$$(4,-3)$$
 & $(-4,-3)$

Now diff. (1) w.r.t 'x'

$$6x = -16 \frac{dy}{dx}$$

$$\frac{6x}{-16} = \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{-3}{8}x$$

m = Slope =
$$\frac{dy}{dx}|_{(4,-3)}$$
 = $\frac{-3}{8}(4)$ = $\frac{-3}{2}$

Also
$$m = \frac{dy}{dx}|_{(-4,-3)} = \frac{-3}{8}(4) = \frac{3}{2}$$

$$\therefore$$
 Equation of tangent at $(4, -3)$ is

$$2y + 6 = -3x + 12$$

 $3x + 2y = 6$
 $3x + 2y - 6 = 0$

$$3x + 2y = 6$$

$$3x + 2y - 6 = 0$$

Equation of tangent at
$$(-4, -3)$$
 is

$$y - y_1 = m(x - x_1)$$

$$y+3 = \frac{+3}{2}(x+4)$$

$$\begin{array}{rcl}
2y+6 & = & 3x+12 \\
3x-2y & = & -6 \\
3x-2y+6 & = & 0
\end{array}$$

$$3x - 2y = -6$$

$$3x - 2y + 6 = 0$$

$3x^2 - 7y^2 = 20$ at points where y = -1. (ii)

Solution:

$$3x^2 - 7y^2 = 20$$
(1)

Put
$$y = -1$$
 in (1)
 $3x^2 - 7(-1)^2 = 20$

$$3x^2 = 20 + 7$$

$$3x^2 = 27$$
 => $x^2 = 9$ => $x = \pm 3$

Thus the required points on the conic are (3, -1) & (-3, -1)

$$6x - 14y \frac{dy}{dx} = 0$$

$$14 \frac{dy}{dx} = 6x$$

$$\frac{dy}{dx} = \frac{6x}{14y} = \frac{3x}{7y}$$

Now m = Slope =
$$\frac{dy}{dx}|_{(3,-1)} = \frac{9}{7}$$
 Also m = $\frac{dy}{dx}|_{(-3,-1)} = \frac{9}{7}$

Therefore equation of tangent at
$$(3, -1)$$
 is $y - y_1 = m(x - x_1)$ $y + 1 = \frac{-9}{7}(x - 3)$ Equation of tangent at $(-3, -1)$ $y - y_1 = m(x - x_1)$ $y + 1 = \frac{9}{7}(x + 3)$ $y + 1 = \frac{9}{7}(x + 3)$ $y + 7 = 9x + 27$ $y + 7y = 20$ $y + 7y - 20 = 0$ Ans $y - 7y + 20 = 0$ Ans

(iii) $3x^2 - 7y^2 + 2x - y - 48 = 0$, at point where x = 4

Solution:

$$3x^{2} - 7y^{2} + 2x - y - 48 = 0 \qquad (1)$$
Put x = 4 in (1)
$$3(4)^{2} - 7y^{2} + 2(4) - y - 48 = 0$$

$$48 - 7y^{2} + 8 - y - 48 = 0$$

$$- 7y^{2} - y + 8 = 0 \implies 7y^{2} + y - 8 = 0$$

$$7y^{2} + 8y - 7y - 8 = 0$$

$$y(7y + 8) - 1(7y + 8) = 0$$

$$(7y + 8) (y - 1) = 0$$

Either

$$7y + 8 = 0$$
 , $y - 1 = 0$
 $y = \frac{-8}{7}$, $y = 1$

Therefore, required points on the conic are $(4, \frac{-8}{7})$ & (4, 1)

Now diff. (1) w.r.t. 'x'
$$6x - 14y \frac{dy}{dx} + 2 - \frac{dy}{dx} = 0$$

 $(-14y - 1) \frac{dy}{dx} = -6x - 2$

$$\frac{dy}{dx} = \frac{6x + 2}{14y + 1}$$

$$m = \frac{dy}{dx} \Big|_{(4, 1)} = \frac{6(4) + 2}{14(1) + 1} = \frac{26}{15} \quad \text{Also } m = \frac{dy}{dx} \Big|_{(4, -\frac{8}{7})} = \frac{6(4) + 2}{14\left(\frac{-8}{7}\right) + 1} = \frac{26}{-15}$$

Equation of tangent at (4, 1) is

$$y - y_1 = m(x - x_1)$$

 $y - 1 = \frac{26}{15} (x - 4)$
 $15y - 15 = 26x - 104$
 $26x - 15y - 89 = 0$ Ans

Equation of tangent at $(4, \frac{-8}{7})$ is

$$y-y_1 = m(x-x_1)$$

$$y+\frac{8}{7} = \frac{-26}{15}(x-4)$$

$$105y-120 = -182x + 728$$

$$182x + 105y - 608 = 0$$
 Ans

Q.3: Find equations of the tangents to each of the following through the given point (i) $x^2 + y^2 = 25$, through (7, -1)

Solution:

$$x^2 + y^2 = 25 \implies r = 5$$

We know that condition of tangency for the circle is

$$c^2 = r^2 (1 + m^2)$$

 $c^2 = 25 (1 + m^2)$

$$\Rightarrow$$
 c = $\pm 5\sqrt{1+m^2}$

Let the required equation of tangent be

y = mx + c (1) Putting value of C in (1)
y = mx ± 5
$$\sqrt{1 + m^2}$$
 (2)

Since tangent line passes through point (7, -1), therefore

$$-1 = 7m \pm 5\sqrt{1 + m^2}$$

$$\pm 5\sqrt{1 + m^2} = 7m + 1 \qquad \text{Squaring}$$

$$25(1 + m^2) = (7m + 1)^2$$

$$25 + 25m^2 = 49m^2 + 1 + 14m$$

$$-24m^2 - 14m + 24 = 0$$

$$12m^2 + 7m - 12 = 0$$

$$12m^2 + 16m - 9m - 12 = 0$$

$$4m(3m + 4) - 3(3m + 4) = 0$$

$$(3m + 4)(4m - 3) = 0$$

$$m = \frac{-4}{3} \qquad m = \frac{3}{4}$$

with
$$m = \frac{-4}{3}$$
 (2) becomes

$$y = -\frac{4}{3}x \pm 5\sqrt{1 + \frac{16}{9}}$$
$$= -\frac{4}{3}x \pm 5\frac{5}{3}$$

$$3y = -4x \pm 25$$

$$4x + 3y \pm 25 = 0$$

(ii)
$$y^2 = 12x$$
 through (1, 4)

Solution:

$$y^2 = 12 x$$

As standard form is

$$y^2 = 4ax$$

$$4a = 12$$

$$=>$$
 a = 3

Let y = mx + c (1) be the required equation of tangent. For Parabola we know that condition of tangency is $c = \frac{a}{m} = \frac{3}{m}$ put in (1)

$$y = mx + \frac{3}{m}$$
(2)

Since tangent line passes through point (1, 4)

So (2) becomes

$$4 = m + \frac{3}{m} = 4m = m^2 + 3$$

$$m^2 - 4m + 3 \qquad = 0$$

$$(m-1)(m-3) = 0$$

$$(m-1)(m-3) = 0$$

 $m = 1$, $m = 3$ Put in (1)

$$y = x + 3$$
 & $y = 3x + \frac{3}{m}$

$$x - y + 3 = 0$$
 $y = 3x + \frac{3}{3}$

$$y = 3x + 1$$

$$3x - y + 1 = 0$$

y = 3x + 1 3x - y + 1 = 0(iii) $x^2 - 2y^2 = 2$ through (1, -2)

$$x^2 - 2y^2 = 2$$

$$\frac{x^2}{2} - \frac{y^2}{1} = 1$$

Solution:

$$x^{2} - 2y^{2} = 2$$

 $\frac{x^{2}}{2} - \frac{y^{2}}{1} = 1$
 $\Rightarrow a^{2} = 2$, $b^{2} = 1$

with
$$m = \frac{3}{4}$$
 (2) becomes

$$y = \frac{3x}{4} \pm 5 \sqrt{1 + \frac{9}{16}}$$
$$= \frac{3x}{4} \pm \frac{25}{4}$$

$$4y = 3x \pm 25$$

$$4y = 3x \pm 25$$

 $3x - 4y \pm 25 = 0$

For hyperbola, we know that condition of tangent is $c^2 = a^2m^2 - b^2$

$$c^2 = a^2 m^2 - b^2$$

$$\Rightarrow$$
 $c^2 = 2m^2 - 1 \Rightarrow c = \pm \sqrt{2m^2 - 1}$

$$>$$
 c = \pm

Let y = mx + c be tangent to the given hyperbola then $y = mx \pm \sqrt{2m^2 - 1}$ Since (1) passes through (1, -2) (1) becomes

$$-2 = m \pm \sqrt{2m^2 - 1}$$

$$-2 - m = \pm \sqrt{2m^2 - 1}$$
 Squaring
$$4 + m^2 + 4m = 2m^2 - 1$$

$$2m^2 - 1 - m^2 - 4m - 4 = 0$$

$$m^2 - 4m - 5 = 0$$

$$m^2 - 4m - 5 = 0$$

$$=> (m-5)(m+1) = 0$$

$$=> m = 5, m = -1$$

Putting values of m in (1) we get

$$y = 5x \pm \sqrt{2(25) - 1}$$
 , $y = -x \pm \sqrt{2 - 1}$
 $y = 5x \pm \sqrt{49}$, $y = -x \pm 1$
 $y = 5x \pm 7$, $y + x \pm 1 = 0$
 $5x - y \pm 7 = 0$ Ans

Q.4: Find equations of normal to the Parabola $y^2 = 8x$, which are parallel to the line 2x + 3y = 10.

Solution:

$$y^2 = 8x$$
 (1) $2x + 3y = 10$ (2) Diff. (1) w.r.t. 'x' $m_2 = \text{Slope of line}$ $2y \frac{dy}{dx} = 8$ $= \frac{-\text{coeff of } x}{\text{coeff of } y}$ $= -\frac{2}{3}$ $m_1 = \frac{dy}{dx} = \frac{4}{y}$ $m_1 = \text{Slope of normal} = \frac{-y}{4}$

Since normal and given line are Parallel

$$m_1 = m_2$$

$$\frac{-y}{4} = \frac{-2}{3} \implies y = \frac{8}{3}$$
Put in (1)
$$\left(\frac{8}{3}\right)^2 = 8x$$

$$\frac{64}{9 \times 8} = x \qquad \Rightarrow \qquad x = \frac{8}{9}$$

Required point
$$(\frac{8}{9}, \frac{8}{3})$$

with
$$y = \frac{8}{3}$$
, m_1 become

$$m_1 = -\frac{8}{3} \times \frac{1}{4} = \frac{-2}{3}$$

Required equation of normal at $(\frac{8}{9}, \frac{8}{3})$ is

$$y-y_1 = m(x-x_1)$$

$$y-\frac{8}{3} = \frac{-2}{3}(x-\frac{8}{9})$$

$$3y-8 = -2(\frac{9x-8}{9})$$

$$27y-72 = -18x+16$$

$$18x+27y-88 = 0$$

Q.5: Find equations of tangents to the ellipse $\frac{x^2}{4} + y^2 = 1$, which are parallel to the line 2x - 4y + 5 = 0.

Solution:

$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$

$$= 2x - 4y + 5 = 0$$

$$= a^2 = 4 , b^2 = 1$$

$$m = \frac{-\text{coeff of } x}{\text{coeff of } y} = \frac{-2}{-4} = \frac{1}{2}$$

We know that condition of tangent for ellipse is

$$c^{2} = a^{2}m^{2} + b^{2}$$
 $c^{2} = 4m^{2} + 1$
 $c = \pm \sqrt{4m^{2} + 1}$

Since tangent is parallel to line 2x - 4y + 5 = 0

$$\therefore \text{ Slope is also m} = \frac{1}{2}$$

$$c = \pm \sqrt{4 \frac{1}{4} + 1} = \pm \sqrt{2}$$

Let the equation of required tangent by

$$y = mx + c$$

$$y = \frac{1}{2}x \pm \sqrt{2}$$

$$2y = x \pm 2\sqrt{2}$$

$$x - 2y \pm 2\sqrt{2} = 0 \text{ Ans}$$

Q.6: Find equations of the tangents to the conics $9x^2 - 4y^2 = 36$ Parallel to 5x - 2y + 7 = 0.

Solution:

$$9x^{2} - 4y^{2} = 36$$

 $\frac{x^{2}}{4} - \frac{y^{2}}{9} = 1$ (Dividing by 36)
=> $a^{2} = 4$, $b^{2} = 9$
 $5x - 2y + 7 = 0$
m = slope of line = $\frac{5}{2}$

For hyperbola, we know that

$$c^2 = a^2m^2 - b^2$$

 $c^2 = 4m^2 - 9$

Since tangent and given line are parallel so their slopes are same. Thus $m = \frac{5}{2}$

$$c^2 = 4\left(\frac{25}{4}\right) - 9$$
 $c^2 = 16$ \Rightarrow $c = \pm 4$

Let y = mx + c be the required equation of the tangent then $y = \frac{5}{2}x \pm 4$

$$2y = 5x \pm 8$$

 $5x - 2y \pm 8 = 0$ Ans.

Q.7: Find equations of common tangents to the given conics.

(i)
$$x^2 = 80y & x^2 + y^2 = 81$$

Solution:

$$x^2 = 80y \dots (1)$$
 $x^2 + y^2 = 81 \dots (2)$

Let y = mx + c (3) be the required common tangent. Let a be radius of circle then (2) becomes $a^2 = 81$ Put in (1)

$$x^2 = 80 \text{ (mx + c)}$$

 $x^2 - 80 \text{ mx} - 80c = 0$

For equal roots, we know that Disc = 0

$$b^2 - 4ac = 0$$

 $(-80 \text{ m})^2 - 4(1) (-80 \text{ c}) = 0$
 $80(80 \text{ m}^2 + 4c) = 0$

$$80 \text{ m}^2 + 4c = 0 \quad c = -20\text{m}^2$$
Condition of tangency for circle is $c^2 = a^2 (1 + \text{m}^2)$ (4)
$$(-20\text{m}^2)^2 = 81(1 + \text{m}^2)$$

$$400 \text{ m}^4 = 81 + 81\text{m}^2$$

$$400 \text{ m}^4 - 81\text{m}^2 - 81 = 0$$

By Quadratic Formula

$$m^{2} = \frac{-(-81) \pm \sqrt{(-81)^{2} - 4(400)(-81)}}{2(400)}$$

$$= \frac{81 \pm \sqrt{136161}}{800} = \frac{9}{16}$$

$$m = \pm \frac{3}{4}$$

$$\therefore c = -20 \left(\frac{9}{16}\right) = \frac{-45}{4}$$

Putting values of m & c in y = mx + c

$$y = \pm \frac{3}{4}x - \frac{45}{4}$$

$$4y = \pm 3x - 45$$

$$\pm 3x - 4y - 45 = 0$$
 Ans.

(ii)
$$y^2 = 16x$$
 & $x^2 = 2y$

Solution:

$$y^2 = 16x \dots (1)$$
 $x^2 = 2y \dots (2)$
 $y^2 = 4ax$
 $4a = 16$
 $a = 4$

We know that condition of tangency for Parabola is $c = \frac{a}{m}$

$$c = \frac{4}{m}$$
Let $y = mx + c$ (3) be required tangent then $y = mx + \frac{4}{m}$ Putting value of y in (2)
$$x^2 = 2(mx + \frac{4}{m}) \implies mx^2 = 2m^2x + 8$$

$$mx^2 - 2m^2x - 8 = 0$$

For equal roots, we know that Disc = 0

i.e;
$$b^2 - 4ac = 0$$

 $(-2m^2)^2 - 4(m)(-8) = 0$
 $4m^4 + 32m = 0$
 $4m(m^3 + 8) = 0$
 $m = 0$, $m^3 = -8$, $m = -2$

Equation of tangent is

$$y = mx + c$$

$$y = -2x + \frac{4}{-2}$$

$$y = -2x - 2$$

$$2x + y + 2 = 0$$
Ans.

Q.8: Find the points of intersection of the given conics.

(i)
$$\frac{x^2}{18} + \frac{y^2}{8} = 1$$
 & $\frac{x^2}{3} - \frac{y^2}{3} = 1$

Solution:

$$\frac{x^{2}}{18} + \frac{y^{2}}{8} = 1 \quad \& \quad \frac{x^{2}}{3} - \frac{y^{2}}{3} = 1$$

$$8x^{2} + 18y^{2} = 144 \qquad x^{2} - y^{2} = 3 \dots (2)$$

$$4x^{2} + 9y^{2} = 72 \dots (1) \quad \text{(Dividing by 2)}$$
Multiplying Eq. (2) by 9 & add in (1)
$$9x^{2} - 9y^{2} = 27$$

$$4x^{2} + 9y^{2} = 72$$

$$13x^{2} = 99$$

$$y = 99$$

$$y = 99$$

$$x^2 = \frac{99}{13} = x = \pm \sqrt{\frac{99}{13}}$$

Put in (2)

$$\frac{99}{13} - y^2 = 3$$

$$\frac{99}{13} - 3 = y^2$$

$$\frac{99 - 39}{13} = y^2$$

$$y^2 = \frac{60}{13} \implies y = \pm \sqrt{\frac{60}{13}}$$

Points of intersection are
$$\left(\pm\sqrt{\frac{99}{13}}\right)$$
, $\pm\sqrt{\frac{60}{13}}$ Ans.

(ii)
$$x^{-} + y^{-}$$

(ii)
$$x^2 + y^2 = 8$$
 & $x^2 - y^2 = 1$

Solution:

$$x^2 + y^2 = 8 \dots (1)$$
 $x^2 - y^2 = 1 \dots (2)$

$$x^2 + y^2 = 8$$

$$\underline{x^2 - y^2} = 1$$

$$2x^2$$
 = 9 => $x^2 = \frac{9}{2}$ => $x = \pm \frac{3}{\sqrt{2}}$

Put in (1)
$$\frac{9}{2} + y^2 = 8$$

$$y^2 = 8 - \frac{9}{2}$$

$$y^2 = \frac{16 - 9}{2} = \frac{7}{2}$$

$$y \ = \ \pm \sqrt{\frac{7}{2}}$$

Hence points of intersection are $\left(\pm \frac{3}{\sqrt{2}}, \pm \sqrt{\frac{7}{2}}\right)$ Ans

(iii) $3x^2 - 4y^2 = 12$ & $3y^2 - 2x^2 = 7$

$$3v^2 - 2y$$

$$3y^2 - 2x^2 = 7$$

Solution:

$$3x^2 - 4y^2 = 12$$
(1)
 $3y^2 - 2x^2 = 7$ (2)

$$3y^2 - 2x^2 = 7$$
(2)

Multiplying equation (1) by (2) & (2) by 3 and adding

$$6x^2 - 8y^2 = 24$$

$$-6x^2 + 9y^2 = 21$$

$$y^2 = 45 = y = \pm \sqrt{45}$$

Put in (2)

$$-2x^2 + 3(45) = 7$$

$$-2x^2 + 135 = 7$$

$$135 - 7 = 2x^2$$

$$128 = 2x^2$$

Hence points of intersection are

$$(\pm 8, \pm \sqrt{45})$$
 Ans.

(iv)
$$3x^2 + 5y^2 = 60$$
 and $9x^2 + y^2 = 124$
Solution:
 $3x^2 + 5y^2 = 60$ (1) $9x^2 + y^2 = 124$ (2)
Multiplying (1) by (3) & Subtracting from (2)
 $9x^2 + y^2 = 124$
 $-9x^2 \pm 15y^2 = -180$
 $-14y^2 = -56$
 $y^2 = 4$ \Rightarrow $y = \pm 2$
Put in (1)
 $9x^2 + 4 = 124$
 $9x^2 = 120$
 $x^2 = \frac{120}{9} = \frac{40}{3}$ $x = \pm \sqrt{\frac{40}{3}}$

Hence points of intersection are $\left(\pm\sqrt{\frac{40}{3}}\pm2\right)$