[CHAPTER 7] OSCILLATIONS 231

g W g WY g W

OSCILLATIONS

LEARNING OBJECTIVES

At the end of this chapter the students will be able to:

Investigate the motion of an oscillator using experimental, analytical and graphical
methods.

Show that the motion of mass attached to a spring is simple harmonic.

Understand that the motion of simple pendulum is simple harmonic and to calculate its
time period.

Understand and use the terms amplitude, time period, frequency, angular frequency
and phase difference.

Know and use of solutions in the form of X = X, cos ot or y = y, sin wt.
Describe the interchange between kinetic and potential energies during SHM.

Describe practical examples of free and forced oscillations.

Q.1 Define oscillatory motion.
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P OSCILLATORY MOTION

“Such a motion in which a body moves to and fro about a
mean position, is called oscillatory or vibratory motion.”

The oscillatory motion is called periodic motion when it
repeats itself after regular intervals of time.

Examples

l. A mass, suspended from a spring, when pulled down and then
released starts oscillating.

2. The bob of a simple pendulum, when displaced from its rest
position and released vibrates.

3. A steel ruler clamped at one end to a bench oscillates when the
free end is displaced sideways.

4. A steel ball rolling in a curved dish.

Thus to get oscillations, a body is pulled away from its rest or
equilibrium position and then released. The body oscillates due to a
restoring force. Under the action of this restoring force, the body
accelerates and it overshoots the rest position due to inertia. The
restoring force then pulls it back. The restoring force is always
directed towards the rest position and so the acceleration is also
directed towards the rest or mean position.

It is observed that the vibrating bodies produce waves. There
are many phenomena in nature whose explanation requires the
understanding of the concepts of vibrations and waves. Although
many large structures, such as skyscrapers and bridges, appear to be
rigid, they actually vibrate. The architects and the engineers who
design and build them, take this fact into account.
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Q.2 Explain simple harmonic motion. (OR) Derive an expression for the acceleration

of a body vibrating under elastic restoring force.

Y SIMPLE HARMONIC MOTION

Consider a body of mass ‘m” attached with a spring of spring
constant (K). The other end of the spring attached with the fixed
support and the spring i1s placed on the smooth horizontal surface.
When the body is pulled towards right from the mean position through
a displacement *x’, a deforming force F = Kx 1s needed. When the
body is released, an elastic restoring force which is equal and opposite
to the deforming force comes into play and restore the position of the
body. But due to inertia, the body over shoot the mean position and
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Thus under the action of restoring force and inertia, the body continue its vibratory motion for a
long time between these two positions A and A'. The body speeds up while moving towards mean
position and slows down while moving away from mean position. This means that the acceleration of
the body is always directed towards the mean position. This acceleration can be calculated as follows:

F = —-Kx (Elastic restoring force)
F = ma (Newton’s IInd law of motion)
Comparing
ma = —-Kx
Kx
. _ _Ba
m

K .
Where E 1$ constant

then, a Constant (—x)
a o —X

Thus such a motion in which acceleration of the body is always directed towards the mean
position and is directly proportional to the displacement called simple harmonic motion.

0.3 Define instantaneous displacement and amplitude.

YR INSTANTANEOUS DISPLACEMENT AND AMPLITUDE OF VIBRATION

i

“When a body is vibrating, its displacement from the mean
position changes with time. The value of its distance from the mean
position at any time is known as its instantaneous displacement.” It 1s

zero at the instant when the body is at the mean position and is £ HEH
maximum at the extreme positions. A Nad A Ne H ﬁ_’l
‘ 5 " ) " . . v N i
It is zero when the body is at mean position and is maximum at N, N, S
- . D H -
the extreme positions. It is denoted by x. !

Amplitude

“The maximum value of displacement (where Hook’s law is valid), on either side of mean
position is called amplitude. It is denoted by xq.

Vibrations
“A complete round trip of body in motion vibrating motion is called vibration.”
Time Period
“It 15 the time required to complete one vibration. It is denoted by “T°.”
Frequency
“Number of vibrations completed in one second is called frequency. It is denoted by “f".”

l,
T
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Angular Frequency o = Angular frequency
If T is the time period of a body executing SHM, its 0 = ot
angular frequency 1s .
g | y s = Vt
2n

(0] T 2nr = ro’l

I 2 = oT

Since T = f o

® =

0} = 2nf T

Wave Form of SHM

The arrangement as shown in figure can be used to record the
vibration in displacement with time for a mass-spring system. The

strip of paper is moving at a constant speed from right to left, thus <«
providing a time scale on the strip. A pen is attached with the vibrating £ [ i
mass, which records its displacement against time as shown in figure. A//' N AN .
N . Lo . b ; I \ JAREFIRIE
It can be scen that the curve showing the variation of =TT
T

displacement with time is a sine curve. It is usually known as wave-
form of SHM.

=

0.4 Discuss simple harmonic motion on the bases of uniform circular motion. Also
calculate displacement and instantaneous velocity.

I SIMPLE HARMONIC MOTION AND UNIFORM CIRCULAR MOTION

Consider a mass ‘m’, attached with the end of a vertically suspended spring, vibrate simple
harmonically with period “T’, frequency °‘f* and amplitude ‘x;’. The motion of mass is displayed by
the ‘P;” on the line *BC” with ‘A’ as mean position, and ‘B’, *C’ as extreme position, as shown in
figure.

Assuming ‘A’ as the position of the pointer at t = 0, it will move so that itisat ‘B’, *A’, *C’
and back to A’ at instants T/4, T/2, 3T/4 and T respectively. This will complete one cycle of
vibration with amplitude of vibration being x; = AB = AC.

LI
SR
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Consider another point ‘P’ moving on a circle of radius “xo” with a uniform angular frequency o
= 27/T, where ‘T" 1s the time period of the vibration of the pointer. It may be noted that the radius of the
circle is equal to the amplitude of the pointer’s motion.

Consider the motion of the point *N°, the projection of *P* on the diameter *DE” drawn parallel to
the line of vibration of the pointer as shown in figure. Note that the level of points ‘D’ and ‘E’ is the
same as the points *B” and ‘C’. As ‘P’ describes uniform circular motion with a constant angular speed
‘o, ‘N oscillates to and fro on the diameter ‘DE’ with time period T. Assuming Oy, to be the position
of P at t = 0, the position of the point N at the instants 0, T/4, T/2, 3T/4 and T will be at the points O, D,
O, E and O respectively. A comparison of the motion of N with that of the pointer P, shows that it is a
replica of the pointer’s motion. Thus the expressions of the displacement. velocity and acceleration for
the motion of N also hold good for the pointer Py, executing SHM.

Displacement

If we count the time t = 0 from the instant when P is passing through O, the angle, which the
radius *OP” sweeps out in time “t’, is 0 = wt. The displacement x of the point N at instant will be

) F

ON = OPsin ZQOP
Since OP = x,

X

Z0,0P = 0 = ot

X = X, sin of
This will be also the displacement of the pointer at the instant “t’.
Instantaneous Velocity

The velocity of point “P” at the instant “t” will be directed along the tangent to the circle at P’
and its magnitude will be

V = rm
Vp = Xom (v r=xX0) . (1)
As the motion of ‘N’ on the diameter ‘DE’ is due to the

motion of ‘P on the circle, the velocity of ‘N’ is actually the
component of V' in a direction parallel to the diameter ‘DE’.

From figure this component is

V . (4]
V_P = sin (90" - 0)

V. = VpcosO - sin(90°-0)=cos0

Putting the value of Vp.
V = XxpmcosB® . (i1)
The direction of velocity of ‘N depends upon the value of phase angle 0. When ‘07 s
between 0 to 907 the direction is from ‘O’ to ‘D’, for ‘07 between 90° to 270° its direction is
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Base c0s 0
Hypt cos
NP
OP cos 0
NP
= cosO . (111)
X0

By using Pythagorean theorem,

(H) = (P)’ +(B)
Xy = x*+(NP)
(‘NP):= \f, X’

I —

NP = \/xg—Xx"

Putting this value in equation (iii).

'\\l x;.] X_
X0

cos 0

Putting this value in equation (ii).

[ 2

P 2
i '§|' Xp— X
V = Xp
Al
] 5|
V. = oVx x|
This equation shows that at mean position, where x = 0, the velocity 18 maximum and at the

extreme positions where x = X, the velocity is zero.

0.5 Derive the relation for acceleration in terms of @.

TR ACCELERATION IN TERMS OF @

When the point P is moving on a circle, it has an acceleration

5 Voo 5
a, = X,m because Q== T o
2
Ve . v
ap - r see (1) (". de — ap_)

At instant t, its direction will be along PO. The acceleration of the
point N will be component of the acceleration a, along the diameter DE on |
which N moves due to motion of P. The value of this component is

. 2 .
a,sin® = x,m"sin®

Thus the acceleration of N 1s

pl .
a = X, sinB
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a :
— = sin®
ap
a = apsin®

Putting value of a,

a = xp’sin® ... (i1)
Considering  AONP

ON

oP sin 0

. x

sin) = %o

Putting this value in equation (ii)

5 X
a = Xp® -
Xo J
— ;=
a = " X

Since acceleration of N 1s directed towards mean position. So

- 3 >

a = - X
— —
or a o — X

This shows that the acceleration is proportional to displacement and is directed towards the mean
position, which is the characteristics of SHM. Thus N is executing SHM with same amplitude,
period and instantaneous displacement as the pointer P;. This conforms that the motion of N is just a

replica, of the pointers motion.

0.6 What is meant by phase angle?

PHASE

“The angle 0 = ®t, which specifies the displacement as well as the direction of motion of the

point, executing SHM is known as phase.”

It 1s the angle, which the rotating radius "OP’ makes with reference direction ‘O0,” at any

instant ‘t’.

At ‘t* = 0, the position of rotating radius “OP” is along *00,’
so that *N” is at its mean position and the displacement is ‘O’. In
general at t = 0, ‘OP” can make any angle ‘¢’ with the reference
‘00," as shown in Fig. 1.

In time ‘t" the radius will rotate by ‘® t’. So, now ‘OP’ would
make an angle (o t +¢) with *OO," as the instant ‘t’ and displacement
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Now the phase angle is

0 = wtt
at t —] 0 F"miLl.!I
N
b6 =9
So ¢ is the initial phase. If we take initial phase as 90" then, » \rﬂ
o,
X = Xgsin (o t+90")
X = Xpcosmt

This also gives the “displacement™ of SHM, but in this case the
‘N’ is starting its motion from extreme position instead of mean position
as shown in figure. Now shadow ‘N’ 1s moving along horizontal
diameter.

0.7 Discuss the motion of mass attach with one end of spring placed on horizontal
surface. A horizontal mass spring system also derive the expressions for time
period, instantaneous displacement and velocity.

LT A HORIZONTAL MASS-SPRING SYSTEM

Consider the vibrating mass attached to a spring as shown whose acceleration at any instant is
given by
k

a - ax ......... (1)

As k and m are constant. We see that the acceleration is directly proportional to the displacement
x and its direction is towards the mean position. In case of circular motion, the acceleration is

a e (2)
Comparing (1) and (2)

) k
-—0°X = — X

5 k
o =

Taking square root

0 = N
\\;' m
21
As T -
0]
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T

I

)

=
4‘ 2 |~
~|8

Instantaneous Displacement
The instantaneous displacement of mass is given by
X = Xgsinmt
Putting value of ®

) k
X = Xpsin [t
m

Instantaneous Velocity

The instantaneous velocity V of mass m is given by

4 b ]
V = oYXy X"

Putting value of ®

\Y

k &
\/%\JXU—XZ
R
= —_ X -7z
ml\ ! Xp
Y =x9‘\/£ =% 3)
m Xy

This equation shows that velocity of mass gets maximum equal to Vi, when x =0 i.e. at mean
position.
k 7
\/% \Xo (1-0)
k -

k

Vo =

Vi

(X0)

k
Vo = X E

) [k . .
PuttingVy = x¢ 7\ m equation (3)

——
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Note: The formula derived for displacement and velocity are also valid for vertically suspended mass-
spring system provided air friction is not considered.

0.8 What is simple pendulum. Show that its motion is S.HM. Also derive the
expression for time period and frequency.

I3 SIMPLE PENDULUM

It is an arrangement in which a heavy bob is suspended with light and inextensible string. “A
simple pendulum consists of a small heavy mass ‘m’, suspended by a light inextensible string of length
‘I’, fixed at its upper end,” by a frictionless support as shown in the figure.

Explanation

When such a pendulum is displaced from its mean position through a small angle ‘0" to position
‘B’ and released. It starts oscillating to and fro.

Two forces are acting on bob
(i) tension ‘T’ along the string.

(1) Its weight ‘mg’ downwards. The weight ‘mg’ can
be resolved into two components.

(1) mgsin0 along the tangent at B. r=1

(ii) mg cos O along the string to balance the tension in
the string.

mg cos B

ic. T = mgcosH .
Therefore ‘mg sin 8° is responsible for the motion of the " ey i8NG @
bob. The restoring force at ‘B’ will be, mg
F = —mgsinB
As 3 = ma
ma = —mgsinf
a = —gsin® L ()

If 0 is very small then sin® = 0 (in radian)
Equation (1) becomes

a = —-gB (2)
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As 0 1s very small.

Arc x = chordx
As S =10
Arc length = s
r =/ and s = Xx
X = /0
X
o =7
Putting this value in cquation (2).
X
a = —g7
L 3)
. g.
Since, ‘[‘15 constant
So, a = — Constant x
a o —X

which shows that the acceleration of a simple pendulum is directly proportional towards the
displacement and is always directed toward the mean position. So the motion of simple pendulum is a
simple harmonic motion.

But for simple harmonic motion

a = —w'x 4)



[CHAPTER 7] OSCILLATIONS 242

From (3) and (4) Q. What is the length of the
5 ’ 2
_olx = j{éx second’s pendulum?
) Ans. As, T = 2sec
(02 = % Ji
T = 2n\ (2
Taking square root g
g Squaring the both sides
o = ] ;0
. . T = 47 (\[— ]
Time Period ; g.
. time period of simple pendulum is / _ ig
1 4n”
I =% ;o (2)° x 9.8
Y - 4(3.14)
T =-=
g/l / ~ 4x98
] - 4x986
T =2n~ \/é [ 98
“This equation shows that the time period depends 9.86
only on the length of the pendulum and the acceleration = 0.9939 m
due to gra‘vny. lt‘1s independent of tht.E mass of the bob.’ / ~ 9939 cm
It is also independent of amplitude.

Second’s Pendulum
“A second’s pendulum is a pendulum which completes one vibration in two seconds.”

Hence time period of such a pendulum is 2 second.

As, T = 2sec
1
f T
o1
¥ =3
f = 0.5 Hz

0.9 Explain the energy conservation in S.H.M.

YR ENERGY CONSERVATION IN SHM

When the mass ‘m” 1is pulled slowly, the spring is stretched by an amount ‘x,’ against the
elastic restoring force ‘F’. It is assumed that the stretching is done slowly, so that acceleration is zero.

According to Hook’s law:

T 1 e
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F = Average force

0+kX(]
2

1

= ;k)(()

Work done in moving the mass *'m’ through “x; is

W = Fd
: |
W = Ekx(,xxn
) 1 2
W = 5kx@

i

This work appears as elastic P.E. of spring.
. 12
Hence, Elastic P.E. = Skxg
This gives maximum P.E. at the extreme position.

1 -
PEow = gkxa

Energy at Extreme Position

At extreme position,

1 2
PE. = EkXQ
K.E. =0
.. Total energy = E = P.E. + K.E.
| 2
E = Ek X4)+0
] | 2
So, E - ikxa

Energy at any Instant ‘t’

At any instant “t’, if the displacement is “x’, then P.E. at that instant is

-

k x”

bd | —

PE. =

the velocity at that instant is;
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K.E. at that instant 18

K.E.

Putting the value of *V’.

K.E.

K.E.

Elulul =

Energy at Mean Position

1

2

b | —

. 1 2
kx‘vikxﬂ—

}
|
o
4
o
|

K.E. is maximum at mean position.

ie., X =

K.E.max =

KE.max =

Also PE. =

| 3
Ekxn(l—o)

2

0

| 2
k xq

PE. +K.E.

0

1

T2

A

2
k xp

1 2
Ekxn
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“Hence the total energy of the vibrating mass and spring system is constant.” When the K.E of
the mass is maximum, the P.E of the spring is zero. On the other hand, when the P.E of the spring is
maximum, the K.E of the mean is zero.

Q.10 Define free and forced oscillations.
FREE AND FORCED OSCILLATIONS

Free Oscillations

“A body is said to be executing free vibrations, when it oscillates without the interference of an
external force. the frequency of these free vibrations is known as its natural frequency.”

Example

A simple pendulum when slightly displaced from its mean position vibrates freely with its
natural frequency that depends only upon the length of the pendulum.

Forced Oscillations

“If a freely oscillating system is subjected to an external force, then forced vibrations will take
place.”

Example
When the mass ot a vibrating pendulum is struck repeatedly, then forced vibrations are produced.
The vibrations of a factory floor caused by running of heavy machinery.

DRIVEN HARMONIC OSCILLATOR

“A physical system under going forced vibrations is known as driven harmonic oscillator.”

Q.11 Explain the phenomenon resonance with example.

LI RESONANCE

Definition S, S,

“The resonance occurs, when the frequency of the applied
force is equal to one of the natural frequencies of vibration of the
forced or driven harmonic oscillator.”

To demonstrate the resonance effect, an apparatus is shown in
the Fig. A horizontal rod ‘AB’ is supported by two strings S, and O

S,. Three pairs of pendulums aa’, bb' and cc are suspended to this a a'
rod. The length of each pair is the same but is different for different ? g
pairs. If one of these pendulums, says c, is displaced in a direction ? y

perpendicular to the plane of the paper, then its resultant oscillatory
motion causes in rod AB a very slight disturbing motion, whose

period is the same as that of ¢
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. . ! +
other pendulums remain small through out the subsequent motions of ¢ and ¢, because their natural

periods are not the same as that of the disturbing force due to rod AB.
Example 1

A swing is a good example of mechanical resonance.
Example 2

The column of soldiers, while marching on a bridge of long
span are advised to break their steps. Their rhythmic march might set
up oscillations of dangerously large amplitude in the bridge structure.

Example 3
Tuning a radio is the best example of electrical resonance.
Example 4

The heating and cooking of food very efficiently and evenly
by microwave oven.

Advantages and Disadvantages of Resonance

We come across many examples of resonance in every day
life. A swing is a good example of mechanical resonance. It is like a
pendulum with a single natural frequency depending on its length. If
a series of regular pushes are given to the swing, its motion can be
built up enormously. If pushes are given irregularly, the swing will
hardly vibrate.

The column of soldiers, while marching on a bridge of long
span are advised to break their steps. Their rhythmic march might set
up oscillations of dangerously large amplitude in the bridge structure.

Tuning a radio is the best example of electrical resonance.
When we turn the knob of a radio, to tune a station, we are changing
the natural frequency of the electric circuit of the receiver, to make it
equal to the transmission frequency of the radio station. When the
two frequencies match, energy absorption is maximum and this is the

only station we hear.

Do You Know?

impartant totest all the co

in helicopters and aeroplanes;
resonance inan asroplane’s wi
or a helicopter rotor could be
dangerous.

Iinteresting Information

iy

The collapse of Tacoma Narrow
Bridge (USA) is suspected to be due
to violent resonance oscillations.

magnetron
produces
microwaves

turntable

_ ) metal box to keep
window has fine microwaves inside

metal mesh over it

Another good example of resonance is the heating and cooking of food very etficiently and evenly

by microwave oven figure. The waves produced in this type of oven have a wavelength of 12 cm at a

frequency of 2450 MHz. At this frequency, the waves are absorbed due to resonance by water and fat

molecules in the food, heating them up and so cooking the food.
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This is a common observation that the amplitude of an

oscillating simple pendulum decreases gradually with time till it y
becomes zero. Such oscillations, in which the amplitude decreases "
steadily with time, are called damped oscillations. %
We know from our everyday experience that the motion of ;% ° t
any macroscopic system is accompanied by frictional effects. While Yo

o , . . - Und d
describing the motion of a simple pendulum, this effects was (a) Undampe

completely ignored. As the bob of the pendulum moves to and fro,
then in addition to the weight of the bob and the tension in the string,
bob experiences viscous drag due to its motion through the air. Thus
simple harmonic motion is an idealization (Fig. a). In practice, the

Amplitude

amplitude of this motion gradually becomes smaller and smaller

(b) Damped

|
-
o

because of friction and air resistance because the energy of the
oscillator is used up in doing work against the resistive forces. Fig. b
shows how the amplitude of a damped simple harmonic wave
changes, with time as compared with an ideal un-damped harmonic
wave. Thus we see that

Damping is the process whereby energy is dissipated from the oscillating system.

An application of damped oscillations is the shock absorber of a car which provides a damping
force to prevent excessive oscillation.

Q.13 What is sharpness of resonance?

J.d SHARPNESS OF RESONANCE Chassis weight  Crogs;secien

Valve

At resonance, the amplitude of vibration becomes very large
when damping is small. Thus, damping prevents the amplitude from
becoming excessively large. The amplitude decreases rapidly at a
frequency slightly different from the resonant frequency. Where as a Suspension
heavily damped system has a fairly flat resonance curve as is shown  SPN9
in an amplitude frequency graph in figure.

Piston

The effect of damping can be observed by attaching a very
light mass such as pith ball, and another of the same length carrying a
heavy mass such as lead bob of equal size, to a rod as shown in figure
(1). They are set into motion (vibrations) by a third pendulum of
equal length attached to the same rod. It is observed that the
amnlitude of lead bob is much ereater than that of nith ball. The
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Amptitude =

Small
damping
Moderate
damping

fa

Driving fréquency



