

OSCILLATIONS

Each question has four possible answers, encircled the correct answer:

To and	fro	motion	of a	body	about	its	mean	position	1S I	known	as:

(a) Linear motion

(b) Rotatory motion

(c) Angular motion

- **(d)** Vibratory motion
- **2.** A motion which repeats itself in equal intervals of time is:
 - (a) Rotatory motion

(b) Periodic motion

(c) Oscillatory motion

- (d) Translatory motion
- **3.** In SHM, the acceleration of a body is directly proportional to:
 - (a) Applied force

(b) Displacement

(c) Restoring force

- (d) Amplitude
- **4.** The law which derived in SHM by:
 - (a) Hook's law

(b) Ampere's law

(c) Dalton's law

(d) Newton's law

- **5.** The wave form of SHM is:
 - (a) Square wave

(b) Sine wave

(c) Cosine wave

- (d) None of these
- **6.** The maximum distance of the vibrating body from the mean position is called:
 - (a) Displacement

(b) Time period

(c) Frequency

- (d) Amplitude
- 7. The number of vibrations completed in one second is called:
 - (a) Amplitude

(b) Frequency

(c) Time period

- (d) Revolution
- **8.** The relation between time period and frequency is:
 - (a) $f = 2\pi T$

(b) $f = \frac{1}{2\pi T}$

(c) $f = \frac{T}{2\pi}$

- **(d)** $f = \frac{1}{T}$
- **9.** \P The time taken to complete one revolution is called:
 - (a) Frequency

(b) Time period

(c) Time

(d) Displacement

19. The time period of mass attached with the spring is:

(a)
$$T = 2\pi \sqrt{\frac{m}{k}}$$

(b)
$$T = 2\pi \sqrt{\frac{k}{m}}$$

(d) $T = \frac{1}{2\pi} \sqrt{\frac{l}{g}}$

(c)
$$T = \frac{2\pi}{\omega}$$

$$(\mathbf{d}) \quad \mathbf{T} = \frac{1}{2\pi} \sqrt{\frac{g}{g}}$$

20. The velocity of a body in SHM is maximum at the:

> Extreme position (a)

(b) Between mean and extreme position

(c) Mean position (d) Between extreme and mean

21. The velocity of the body is minimum at the:

> (a) Mean position

- Extreme position **(b)**
- (c) Between mean and extreme position
- None of the above (d)

22. The acceleration of projection of a point P on the diameter moving on a circle is:

 $-\omega^2 x$ (a)

 ωx^2 **(b)**

 $-\omega x^2$ (c)

23.

24.

 $\omega^2 x$ (d)

The time period of simple pendulum depends upon:

Thickness of the thread (a)

- Mass of the pendulum **(b)**
- Length of the pendulum (c)
- (d) **Amplitude**

The time period of simple pendulum is:

(a) 1 second

1.5 second **(b)**

2 second (c)

None of these (d)

25.9 The phase angle $\theta = \omega t$ of a body performing SHM indicates:

- Only the magnitude of displacement (a)
- **(b)** Only the direction of the displacement
- Both magnitude and direction
- (d) None of these

A body performing SHM has a displacement X given by the equation $X = 30 \sin 50 t$, what is the 26. frequency of oscillation:

 $0.020 \; Hz$ (a)

0.13 Hz**(b)**

8.0 Hz (c)

50 Hz (d)

27. In vibratory motion:

> P.E remains constant (a)

- K.E remains constant **(b)**
- (c) Total energy remains constant
- None of these (d)

When a particle is moving along a circular path, its projection along the diameter executes: 28.

S.H.M (a)

Angular motion **(b)**

(c) Linear motion (d) Rotatory motion 29. The instantaneous speed of the projection on the diameter for a particle moving in a circle is:

$$(a) \quad \omega^2 \sqrt{x_o^2 - x^2}$$

(b)
$$\omega^2 \sqrt{x_0 - x}$$

(c)
$$\omega \sqrt{x_o^2 - x^2}$$

(d) None of these

30. The maximum K.E of the mass attached with spring is given by:

(a)
$$(K.E)_{max} = \frac{1}{2} kx_0^2$$

(b)
$$(K.E)_{max} = \frac{1}{2} Kx_0$$

(c)
$$(K.E)_{max} = \frac{1}{2} Kx^2$$

(d)
$$(K.E)_{max} = \frac{1}{2} Kx$$

31. The maximum velocity V_0 of the mass attached to the end of an elastic spring is:

$$(a) \quad V_0 = X_0 \sqrt{\frac{m}{k}}$$

(b)
$$V_0 = x \sqrt{\frac{k}{m}}$$

(c)
$$V_0 = x \cdot \sqrt{\frac{m}{k}}$$

$$(\mathbf{d}) \quad \mathbf{v}_0 = \mathbf{x}_0 \, \sqrt{\frac{\mathbf{k}}{\mathbf{m}}}$$

32. The total energy of a body executing S.H.M is directly proportional to:

(a) The amplitude

(b) Square of amplitude

(c) Square root of amplitude

(d) None of these

The total energy of a mass attached with spring is:

(a) Remain constant

(b) Increased

(c) Decreased

(d) None of these

34. The force which is responsible for the motion of simple pendulum is:

(a) $-mg \sin \theta$

(b) $-\text{mg cos }\theta$

(c) mg

33.

(d) mg tan θ

35.9 The time period of simple pendulum is given as:

(a)
$$T = 2\pi \sqrt{\frac{l}{g}}$$

(b)
$$T = 2\pi \sqrt{\frac{g}{l}}$$

(c)
$$T = \frac{1}{2\pi} \sqrt{\frac{l}{g}}$$

$$(d) T = \frac{1}{\pi} \sqrt{\frac{l}{g}}$$

36. The time period of a simple pendulum is directly proportional to the:

(a) $\sqrt{\frac{1}{l}}$

(b) \sqrt{l}

(c) \sqrt{g}

(d) $\sqrt{\frac{1}{g}}$

37. If the mass of the bob of simple pendulum is doubled, its time period is:

(a) One half

(b) Double

(c) Remains constant

(d) One fourth

The time period of a simple pendulum is independent of its:

(a) Mass

38.

43.

- **(b)** Length
- (c) Acceleration due to gravity
- (d) Restoring force

39. The frequency of the second pendulum is:

(a) 0.5 Hz

(b) 15 Hz

(c) 2 Hz

(**d**) 1 Hz

40. The frequency of second pendulum is given by:

$$(a) \quad f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

(b)
$$f = 2\pi \sqrt{\frac{l}{g}}$$

(c)
$$T = \frac{1}{2\pi} \sqrt{\frac{l}{g}}$$

(d) None of these

41.9 The length of second's pendulum is:

(a) 0.99 m

(b) 0.6 m

(c) 3 m

(**d**) 2 m

42. When the bob of simple pendulum is at extreme position, it has:

(a) Potential energy

(b) Kinetic energy

(c) Both P.E and K.E

(d) None of these

When the bob of simple pendulum is at mean position then it has:

(a) Potential energy

(b) Kinetic energy

(c) Both P.E and K.E

(d) None of these

44.9 Total energy of a particle executing SHM at any displacement X is given by:

(a)
$$T.E = kx$$

(b) T.E =
$$\frac{1}{2} kx_0^2$$

(c)
$$T.E = \frac{1}{2} kx_0$$

(d) T.E =
$$\frac{1}{2}$$
 kx²

45. At the centre of the earth, the simple pendulum will:

- (a) Vibrate with double time period
- **(b)** Vibrate with half time period

(c) Not move

(d) None of these

46. The value of g is calculated from:

(a) $g = \frac{\pi^2 l}{T^2}$

(b) $g = \frac{2\pi^2}{IT^2}$

(c) $g = \sqrt{\frac{4\pi^2 l}{T}}$

(d) $g = \frac{4\pi^2 l}{T^2}$

47. The length of simple pendulum is calculated from the expression:

(a) $l = \frac{Tg^2}{4\pi^2}$

(b) $l = \frac{T^2g}{4\pi^2}$

(c) $l = \frac{T^2 g^2}{4\pi^2}$

(d) $l = \frac{4\pi^2}{T^2g^2}$

The acceleration of the body having SHM depends upon its:

(a) Velocity

48.

- **(b)** Mass
- (c) Displacement from mean position
- (d) None of these

49. The time period of a simple pendulum depends upon:

(a) Mass of bob

(b) Length of thread

(c) Height of bob

(d) None of these

50. \bigcirc The time period of second's pendulum is:

(a) 4 seconds

(b) 1 seconds

(c) 3 seconds

(d) 2 seconds

51. The time period of the mass attached with spring executing S.H.M is:

(a) $T = 2\pi \sqrt{\frac{m}{k}}$

(b) $T = \pi \sqrt{\frac{k}{m}}$

(c) $T = 2\pi \sqrt{mk}$

(d) None of these

52. A heating and cooking of food evenly by Microwave oven is an example of:

(a) S.H.M

(b) Damped oscillations

(c) Resonance

(d) None of these

53. The angular velocity and angular frequency is related by the relation:

(a) $\omega = 2\pi f$

(b) $f = 2\pi\omega$

(c) $f = \frac{2\pi}{\omega}$

(d) $\omega = \frac{2\pi}{f}$

54. Work done during horizontal mass spring system by the average force is:

(a) $\frac{1}{2}$ kx

(b) $\frac{1}{2} F_{\text{avc}} x$

(c) $\frac{F_{avc}}{x}$

(d) $\frac{1}{2}$ kx

55. The direction of both acceleration and restoring force in SHM is:

(a) Same direction

- (b) Opposite direction
- (c) Perpendicular to each other
- (d) None of these

56. If an oscillating body is subjected to an external force then it is said to be executing:

(a) Free oscillations

(b) Forced oscillations

(c) Mixed oscillations

(d) Damping

57. If a body vibrates with its natural frequency without the effect of an external force then it is said to be:

(a) Free oscillations

(b) Forced oscillations

(c) Mixed oscillations

(d) Oscillations

OBJE	CIIVE	PHYSICS PARI-I		1	19		
58.	Lou	d music produced by sounding wooden	board	s of strings instruments is an example of:			
	(a)	Free oscillations	(b)	Beats			
	(c)	Forced oscillations	(d)	Damped oscillations			
59.	Whe	When damping is small, the amplitude of vibration in resonance will be:					
	(a)	Unchanged	(b)	Large			
	(c)	Small	(d)	None of these			
60.	Hov	v long must be the length of a simple per	m in order to have a period of one second:				
	(a)	0.50 m	(b)	0.25 m			
	(c)	1 m	(d)	3 m			
61.	Sho	ck absorber in automobiles is a practical	form	of:			
	(a)	SHM	(b)	Damped oscillations			
	(c)	Pascal's law	(d)	None of these			
62.	Dan	nping effect applied on an aeroplane wir	ng is:				
	(a)	For more speed	(b)	To push upward			
	(c)	To overcome resonance effect	(d)	To overcome gravity			
63.	The	amplitude of the lead ball is much great	n that of the:				
	(a)	Pitch ball	(b)	Iron ball			
	(c)	Plastic ball	(d)	None of these			
64.	Whe	en potential energy of the mass is maximu	e kinetic energy of the spring is:				
	(a)	Zero	(b)	Maximum			
	(c)	Minimum	(d)	None of these			
65.		he position of oscillating object is	given	by the equation $X = \sqrt{2} \cos \left(\frac{\pi}{8} t\right)$ then	its		
	_	lacement after 2 second is:	<i>a</i> .				
	(a)	3 m	(b)	2 m			
	(c)	1 m	(d)	0 m			
66.		projection of a particle moving along a					
	(a)	Simple motion	(b)	Angular motion			
	(c)	Translatory motion	(d)	S.H.M			
67.	In si	imple harmonic motion, the acceleration	ways directed:				
	(a)	Towards its mean position	(b)	Away from mean position			
	(c)	Along the tangent	(d)	None of these			
68.	In o	scillating motion:					
	(a)	P.E remains constant	(b)	K.E remains constant			
	(c)	Total energy remains constant	(d)	None of these			

OBJE	CTIVE	PHYSICS PART-I			180					
69.	The	body oscillates due to:								
	(a)	Gravitational force	(b)	Frictional force						
	(c)	Restoring force	(d)	Deforming force						
70.	The	The oscillatory motion which does not repeat after regular interval of time is called:								
	(a)	Periodic motion	(b)	Circular motion						
	(c)	Non-periodic motion	(d)	Orbital motion						
71.	Acc	Acceleration of spring mass system is:								
	(a)	Uniform								
	(b)	Variable due to both change in magnitude and direction								
	(c)	Variation due to change in direction								
	(d)	Variation due to change in magnitude								
72.	In a	In an isolated spring mass system, total energy is:								
	(a)	Variable	(b)	Constant						
	(c)	Low	(d)	High						
73.	The	The formula $T = 2\pi \sqrt{\frac{l}{g}}$ of a simple pendulum holds only if:								
	(a)	Amplitude of the motion should be small	(b)	Length of pendulum is small						
	(c)	Length of pendulum is large	(d)	Mass of pendulum is small						
74.	Pote	Potential energy of spring mass system is stored in:								
	(a)	Spring	(b)	Mass						
	(c)	Length	(d)	None of these						
75.	A q	A quantity which indicates the state and direction of motion of a vibrating body is known as:								
	(a)	Amplitude		Displacement						
	(c)	Phase angle	(d)	Time period						
76.	In n	nicrowave oven, heating is produced by	pheno	omenon of:						
	(a)	Harmonic vibration	(b)	Forced vibration						
	(c)	Free vibration	(d)	Resonance						
77.	The	frequency of waves produced in microv	vave (oven is:						
	(a)	2450 MHz	(b)	1435 MHz						
	(c)	1760 MHz	(d)	2550 MHz						
78.	The	The wavelength of the waves produced in microwave oven is:								
	(a)) 8 cm		10 cm						
	(c)	14 cm	(d)	12 cm						
79.	The	The sharpness of the resonance curve depends on:								
	(a)			Loss of potential energy						
	(c)	Loss of kinetic energy	(d)	Frictional loss of energy						

OBJE	CTIVE	PHYSICS PART-I		182					
90.	Sola	ar cells are made up from the material ca	alled:						
	(a)	Iron	(b)	Oxygen					
	(c)	Carbon	(d)	Silicon					
91.	At p	At present, the hydroelectric generating capacity in Pakistan amounts to about:							
	(a)	4000 mega watt	(b)	3000 mega watt					
	(c)	5000 mega watt	(d)	None of these					
92.	The	The consumption of energy by a 60 watt bulb in 2s in:							
	(a)	120 J	(b)	100 J					
	(c)	90 J	(d)	0.02 J					
93.9	In S	HM, the restoring force is directly prope	ortion	ate to:					
	(a)	Velocity	(b)	Acceleration					
	(c)	Displacement	(d)	Time period					
94.		tudent made a simple pendulum of time per to make a simple pendulum of time per	•	iod 1 sec. The string used is of length 1 m, in 2 sec, he should use a string of length.					
	(a)	2 m	(b)	3 m					
	(c)	4 m	(d)	4 sec.					
95.	Tim	Time period of second pendulum at moon is:							
	(a)	1 sec.	(b)	2 sec.					
	(c)	3 sec.	(d)	4 sec.					
96.		If the period of oscillation of mass M suspended from a spring is 1 sec., then period of mass 4 M will be:							
	(a)	$\frac{1}{4}$ sec.	(b)	$\frac{1}{2}$ sec.					
	(c)	2 sec.	(d)	4 sec.					
97.		A girl is swinging on a swing in the sitting position. How will the period of swing be affected if she stands up?							
	(a)	The period will now be shorter							
	(b)	The period will now be longer							
	(c)	The period will remain unchanged							
	(d)	d) The period may become longer or shorter depending upon the height of girl							
98.		A simple harmonic oscillator has time period T. The time taken by it to travel from the extreme position to half the amplitude is:							
	(a)	$\frac{T}{6}$	(b)	$\frac{\mathrm{T}}{4}$					
	(c)	$\frac{T}{8}$	(d)	$\frac{\mathrm{T}}{2}$					

- **107.** A particle of mass 200 g executes S.H.M. The restoring force is provided by a spring of force constant 80 Nm⁻¹. The time period of oscillation is:
 - (a) 0.31 sec.

(b) 0.15 sec.

(c) 0.05 sec.

- (d) 0.02 sec.
- 108. A particle of mass 0.5 kg executes S.H.M its energy is 0.04 J. If time period is π -seconds its amplitude is:
 - (a) 10 cm

(b) 15 cm

(c) 20 cm

- (d) 40 cm
- 109. The two spring mass system, shown in the figure oscillates with a period T. If one spring is used, the time period will be:
 - (a) $\frac{T}{\sqrt{2}}$

(b) $\frac{T}{2}$

(c) $\sqrt{2}$ T

(d) 2T

- 110. A particle executing S.H.M has an amplitude of 6 cm. Its acceleration at a distance of 2 cm from the mean position is 8 cms⁻². The maximum speed of the particle is:
 - (a) 8 cms^{-1}

(b) 12 cms^{-1}

(c) 16 cms^{-1}

- (d) 24 cms^{-1}
- 111. The two spring mass system, shown in the figure, oscillates with a period T. If only one spring is used, the time period will be:
 - (a) $\frac{T}{\sqrt{2}}$

(b) $\frac{T}{2}$

(c) $\sqrt{27}$

(d) 2T

- 112. The equation of displacement of a body executing S.H.M is $x = x_0 \cos \omega t$. What is initial phase?
 - (a) 0°

(b) 90°

(c) 180°

- (d) 270°
- 113. Which of the following is an example of damped oscillations?
 - (a) Mass attached to a spring
- **(b)** Bob of pendulum

(c) Shock absorber of a car

- (d) All of them
- **114.** The sharpness of the resonance curve of a resonating curve depends on:
 - (a) Loss of K.E.

- **(b)** Loss of P.E.
- (c) Frictional loss of energy
- (d) Loss of mechanic energy

(a) Zero

(b) Maximum

(c) Half of the maximum

- (d) Quarter of the maximum
- **116.** A body moves with SHM and makes a complete oscillations in n second. What is angular frequency?
 - (a) $n \text{ rad } s^{-1}$

(b) $1/n \text{ rad s}^{-1}$

(c) $2\pi n \text{ rad s}^{-1}$

- (d) $2\pi/n \text{ rad s}^{-1}$
- **117.** The product of time period and frequency is equal to:
 - (a) 3

(b) 2

(c) 1

- (d) Zero
- **118.** Waves transmit from one place to another:
 - (a) Wavelength

(b) Amplitude

(c) Mass

- (d) Energy
- 119. If water is disturbed in a ripple tank periodically, waves one after the other passing through a point are known as:
 - (a) Matter waves

- **(b)** Longitudinal waves
- (c) Transverse period waves
- (d) Mechanical waves
- **120.** When two identical travelling waves are superposed, the velocity of the resultant waves:
 - (a) Decreases

(b) Increases

(c) Remains unchanged

- (d) Becomes zero
- **121.** The distance between two consecutive nodes is:
 - (a) $\lambda/2$

(b) $\lambda/4$

(c) λ

- (d) 2λ
- 122. The diagram below represents the displacement of a particle caused by a progressive wave travelling at a speed 5.0 kms⁻¹.

When is the frequency of the vibration of the particle.

(a) 2.5 KHz

(b) 5.0 KHz

(c) 25 KHz

- (d) 50 KHz
- **123.** A particle performs simple harmonic motion of amplitude 0.020 m and frequency 2.5 Hz. What is its maximum speed?
 - (a) 0.008 ms^{-1}

(b) 0.050 ms^{-1}

(c) 0.125 ms^{-1}

(d) 0.314 ms^{-1}

124.

- Vibratory (or oscillatory) motion is always under:
 - (a) An applied force

(b) An elastic restoring force and inertia

(c) Periodic force

- (d) Gravitational force
- 125. The maximum K.E. of the mass attached to an elastic spring is given by:
 - (a) $(K.E.)_{max} = \frac{kx_0}{2}$

(b) $(K.E.)_{max} = \frac{kx_o^2}{2}$

(c) $(K.E.)_{max} = \frac{kx}{2}$

- **(d)** $(K.E.)_{max} = \frac{kx^2}{2}$
- **126.** The length of second's pendulum is:
 - (a) 100 cm

(b) 99 cm

(c) 99.2 cm

- (d) 98 cm
- **127.** At what place motion of simple pendulum will be slowest:
 - (a) Poles

(b) Equator

(c) On the surface of earth

- (d) At the centre of the earth
- **128.** The frequency of the second pendulum is:
 - (a) 1 hertz

(b) 0.5 hertz

(c) 1.5 hertz

- (d) 2 hertz
- 129. The diagram below represents the variation with time of pressure at a point in air through which a sound wave is travelling at 340 ms⁻¹.

What is the frequency of the wave?

(a) 1.7 Hz

(b) $5.0 \times 10^3 \text{ Hz}$

(c) $1.6 \times 10^4 \text{ Hz}$

- (d) $3.1 \times 10^4 \text{ Hz}$
- 130. A body performing simple harmonic motion has a displacement x given by the equation = 30 sin 50 t, where t is the time in seconds. What is the frequency of oscillations?
 - (a) 0.020 Hz

(b) 0.13 Hz

(c) 8.0 Hz

(d) 30 Hz

ANSWERS

1.	(d)	2.	(b)	3.	(a)	4.	(a)
5.	(b)	6.	(d)	7.	(b)	8.	(d)
9.	(b)	10.	(d)	11.	(b)	12.	(b)
13.	(d)	14.	(a)	15.	(b)	16.	(a)
17.	(a)	18.	(b)	19.	(a)	20.	(c)
21.	(b)	22.	(a)	23.	(c)	24.	(c)
25.	(c)	26.	(c)	27.	(c)	28.	(a)
29.	(c)	30.	(a)	31.	(d)	32.	(b)
33.	(a)	34.	(a)	35.	(b)	36.	(b)
37.	(c)	38.	(a)	39.	(a)	40.	(a)
41.	(a)	42.	(a)	43.	(b)	44.	(b)
45.	(a)	46.	(d)	47.	(b)	48.	(c)
49.	(b)	50.	(d)	51.	(a)	52.	(c)
53.	(a)	54.	(b)	55.	(b)	56.	(b)
57.	(a)	58.	(b)	59.	(b)	60.	(b)
61.	(b)	62.	(c)	63.	(b)	64.	(c)
65.	(c)	66.	(d)	67.	(a)	68.	(c)
69.	(c)	70.	(c)	71.	(b)	72.	(b)
73.	(a)	74.	(a)	75.	(c)	76.	(d)
77.	(a)	78.	(d)	79.	(d)	80.	(b)
81.	(b)	82.	(d)	83.	(a)	84.	(c)
85.	(a)	86.	(a)	87.	(a)	88.	(d)
89.	(c)	90.	(d)	91.	(b)	92.	(a)
93.	(c)	94.	(c)	95.	(b)	96.	(c)
97.	(a)	98.	(c)	99.	(b)	100.	(b)
101.	(c)	102.	(a)	103.	(b)	104.	(d)
105.	(a)	106.	(b)	107.	(a)	108.	(d)
109.	(c)	110.	(b)	111.	(a)	112.	(b)
113.	(d)	114.	(c)	115.	(b)	116.	(c)
117.	(c)	118.	(d)	119.	(d)	120.	(c)
121.	(a)	122.	(b)	123.	(d)	124.	(b)
125.	(b)	126.	(c)	127.	(d)	128.	(b)
129.	(b)	130.	(c)				