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WAVES

LEARNING OBJECTIVE

At the end of this chapter the students will be able to:

Recall the generation and propagation of waves.

Describe the nature of the motions in transverse and longitudinal waves.
Understand and use the terms wavelength, frequency and speed of wave.
Understand and use the equation v = fi.

Understand and describe Newton’s formula of speed of sound.

Derive Laplace correction in Newton'’s formula of speed of sound.

Derive the formula v = v, + 0.61t.

Explain and use the principle of superposition.

Understand the terms interference and beats.

Understand and describe reflection of waves.

Explain the formation of a stationary wave using graphical method.
Understand the terms node and anti-node.

Understand and describe modes of vibration of string.

Understand and describe Doppler’s effect and its causes.

Waves transport energy without transporting matter. The energy transportation is carried by a
disturbance, which spreads out from a source. We arc well familiar with different types of waves such as
water waves in the ocean, or gently formed ripples on a still pond due to rain drop. When a musician
plucks a guitar-string, sound wavcs arc generated which on reaching our car, produce the sensation of
music. Wave disturbances may also come in a concentrated bundle like the shock waves from an
aeroplane flying at supersonic speed. Whatever may be the nature of waves, the mechanism by which it
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oscillations. The waves which propagate by the oscillation of material particles are known as mechanical
waves.

There is another class of waves which, instead of material particles, propagate out in space due to
oscillations of electric and magnetic fields. Such waves are known as electromagnetic waves. We will
undertake the study of electromagnetic waves at a later stage. Here we will consider the mechanical
waves only. The waves generated in ropes, strings, coil of springs, water and air are all mechanical
waves.

So far we have been considering motion of individual particles
but in case of mechanical waves, we study the collective motion of
particles. An example will help us here. If you look at a black and
white picture in a newspaper with a magnifying glass, you will
discover that the picture is made up of many closely spaced dots. It you
do not use the magnifier, you do not see the dots. What you see is the
collective effect of dots in the form of a picture. Thus what we see as
mechanical wave is actually the effect of oscillations of a very large
number of particles of the medium through which the wave is passing.

PROGRESSIVE WAVES

Drop a pebble into water. Ripples will be produced and spread out across the water. The ripples
are the examples of progressive waves because they carry energy across the water surface. A wave,
which transfers energy by moving away from the source of disturbance, is called a progressive or
travelling wave. There are two kinds of progressive waves — transverse waves and longitudinal waves.
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When this hump reaches the other person, (b) A\
it causes his hand to move up (Figure c). Thus the s %
e
r%

|nncbtou'aud many kilometres.

Transverse and Longitudinal Waves

Consider two persons holding opposite
ends of a rope or a hosepipe. Suddenly one person
gives one up and down jerk to the rope. This
disturbs the rope and creates a hump in it which
travels along the rope towards the other person
(Figure a and b).

energy and momentum imparted to the end of the
rope by the first person has reached the other end
of the rope by travelling through the rope i.e., a
wave has been set up on the rope in the form of a
moving hump. We call this type of wave a pulse.
The forward motion of the pulse from one end of
the rope to the other is an example of progressive wave. The hand jerking the end of the rope is the
source of the wave. The rope is the medium in which the wave moves.




[CHAPTER 8] WAVES

A large and loose spring coil (slinky spring) can be used to
demonstrate the effect of the motion of the source in generating waves
in a medium. It is better that the spring is laid on a smooth table with its
one end fixed so that the spring does not sag under gravity.

If the free end of the spring is vibrated from side to side, a pulse
of wave having a displacement pattern shown in figure (a) will be
generated which will move along the spring.

If the end of the spring is moved back and forth, along the
direction of the spring itself as shown in figure (b), a wave with back
and forth displacement will travel along the spring. Waves like those in
figure (a) in which displacement of the spring is perpendicular to the
direction of the waves are called transverse waves. Waves like those in

Transverse waves

Longitudinal waves

(b)

figure (b) in which displacements are in the direction of propagation of the waves are called longitudinal
waves. In this example the coil of spring is the medium, so in general we can say that

Transverse waves are those in which particles of the medium are displaced in a direction
perpendicular to the direction of propagation of waves and longitudinal waves are those in which
the particles of the medium have displacements along the direction of propagation of waves.

Both types of waves can be set up in solids. In fluids, however, transverse waves die out very
quickly and usually cannot be produced at all. That is why, sound waves in air are longitudinal in nature.

PERIODIC WAVES

Upto now we have considered wave in the form of a pulse
which is set up by a single disturbance in a medium like the snapping
of one end of a rope or a coil spring. Continuous, regular and rhythmic
disturbances in a medium result from periodic vibrations of a source
which cause periodic waves in that medium. A good example of a
periodic vibrator is an oscillating mass-spring system (figure a). We
have already studied in the previous chapter that the mass of such a
system executes SHM.

Transverse Periodic Waves

Imagine an experiment where one end of a rope is fastened to a
mass spring vibrator. As the mass vibrates up and down, we observe a
transverse periodic wave travelling along the length of rope (figure b).
The wave consists of crests and troughs. The crest is a pattern in which
the rope is displaced above its equilibrium position, and in troughs, it
has a displacement below its equilibrium position.

As the source executes harmonic motion up and down with
amplitude A and frequency f, ideally every point along the length of
the rope executes SHM in turn, with the same amplitude and
frequency. The wave travels towards right as crests and troughs in turn,
replace one another, but the points on the rope simply oscillates up and
down. The amplitude of the wave i1s the maximum value of the

1" 1 1 d %, = e a L. q, 1 i~ .1
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letter lambda A (figure b).

In principle, the speed of the wave can be measured by timing \ /\
the motion of a wave crest over a measured distance. But it is not \ / \ / : (a)

always convenient to observe the motion of the crest. As discussed
below, however, the speed of a periodic wave can be found indirectly
from its frequency and wavelength.

As a wave progresses, each point in the medium oscillates t
periodically with the frequency and period of the source. Figure
illustrates a periodic wave moving to the right, as it might look in /“\ /"\
photographic snapshots taken every 1/4 period. Follow the progress of
the crest that started out from the extreme left at t = 0. The time that / \/ \'/t =
this crest takes to move a distance of one wavelength is equal to the
time required for a point in the medium to go through one complete
oscillation. That is the crest moves one wavelength A in one period of \t 3
oscillation T. The speed v of the crest is therefore,

0
Vs

Distance moved A

~ Corresponding time interval T

A%

All parts of the wave pattern move with the same speed, so the speed of any one crest is just the
speed of the wave. We can therefore, say that the speed v of the waves is

A _
\% =T e (1)

but % = f, where f'is the frequency of the wave. It is the same as the frequency of the vibrator, generating
the waves. Thus eq. (1) becomes

Y = .. (2)
Phase Relationship between Two Points on a Wave

The profile of periodic waves generated by a source - <
exccuting SHM is represented by a sine curve. Figure shows the
snapshot of a periodic wave passing through a medium. In this
figure, set of points are shown which are moving in unison as the
periodic wave passes. The points C and C', as they move up and
down, are always in the same state of vibration i.e., they always have
identical displacements and velocities. Alternatively, we can say that as the wave passes, the points C
and C" move in phase. We may also say that C' leads C by one time period of 2xn radian. Any point at a
distance x, C lags behind by phase angle.

D (]

21X

b =
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...... are all in phase with each other. These points can be anywhere along the wave and need not
correspond with only the highest and lowest points. For example, points such as P, P, P", ...... are all in
phase. Each is separated from the next by a distance A.

Some of the points are exactly out of step. For example, when point C reaches its maximum
upward displacement, at the same time D reaches its maximum downward displacement. At the instant
that C begins to go down, D begins to move up. Points such as these are called one half period out of

. . Y S § .
phase. Any two points separated from one another by 5 , 3 ;L, 55, arc out of phase.

Longitudinal Periodic Waves

In the previous section we have considered the generation of transverse periodic waves. Now we
will see how the longitudinal periodic waves can be generated.

Consider a coil of spring as shown in figure. It is suspended by
threads so that it can vibrate horizontally. Suppose an oscillating force F
is applied to its end as indicated. The force will alternately stretch and
compress the spring, thereby sending a series of stretched regions
(called rarefaction) and compressions down the spring. We will see the
oscillating force causes a longitudinal wave to move down the spring.
This type of wave generated in springs is also called a compressional
wave. Clearly in a compressional wave, the particles in the path of wave
move back and forth along the line of propagation of the wave.

Displacement i i

Notice in figure, the supporting threads would be exactly vertical if the spring were undisturbed.
The disturbance passing down the spring causes displacements of the elements of the spring from their
equilibrium positions. In figure, the displacements of the threads from the vertical are a direct measure
of the displacements of the spring elements. It is, therefore, an easy way to graph the displacements of
the spring elements from their equilibrium positions and this is done in the lower part of the figure.

Q.1 Define progressive waves with its types.

TT) PROGRESSIVE WAVES (TRAVELLING WAVE)

A wave, which ftransfers energy in moving away from the source of disturbance, is called a
progressive or travelling waves

There are two kinds of traveling waves
(1)  Transverse waves.
(i1) Longitudinal waves.

(i) Transverse Waves

“Transverse waves are those in which particles of the medium are displaced in a direction
perpendicular to the direction of propagation of waves.”

e.g., water waves, light waves.

(ii) Longitudinal Waves (Compressional Waves)



[CHAPTER 8] WAVES 268

Both types of waves can be setup in solids in liquids however, transverse waves die out very
quickly and usually cannot be produced at all that is why sound waves in air one longitudinal in nature.

Periodic Waves

“Continuous, regular and rhythmic disturbances in a medium result from periodic vibrations of a
source which cause periodic waves in that medium.”

e.g.. Oscillating mass—spring system.

Transverse Periodic Waves

Crest
“The portion of transverse wave above its mean position, Crest Crest

is called crest.” V—\ /\

Tngh \ Mean level
“The potion of transverse wave below its mean position,

is called trough.” Trough
Wavelength
“The distance between any two consecutive crests or troughs, is called wave length.”

It is denoted by a Greek letter Lambda ().

0.2 Show thatV=2Af.

|,'Ans._ The time that the crest takes to move a distance of onc \ /-\ /«\
wave length is cqual to the time required for a point in NARVEES h
the medium to complete one oscillation i.e., crest moves /

one wave length ‘A’ in one period of oscillation ‘T,
the speed ‘V of the crest (wave) is /“\ /‘

A
1 (€]
Distance moved / \\/ l\./"le

As, v = Corresponding time interval
\\=§T[d)
i (S R I A
V = .S in
Tx‘v_t_ \../ \/'=T
Si - f
ince, T =
V. =5if

Which is the relation between speed, frequency and wavelength.

Longitudinal Periodic Waves
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“The portion of longitudinal wave where particles of medium are very close to each other is
called compression.”

Rarefaction

“The portion of longitudinal wave where particles of medium are far apart from each other is
called rarefaction.”

0.3 Explain Newton’s formula for the speed of sound in air.

SPEED OF SOUND IN AIR

(i) Newton’s Formula for Speed of Sound in Air

When one particle of the medium is disturbed, the disturbance in the form of wave travel in all
directions in the medium. The velocity of disturbance depends upon the density and the clasticity of the
medium. The lighter the density of the medium, more quickly the disturbance moves from point to point
and similarly greater the elasticity of the medium, more quickly disturbance will be propogated from
point to point in the medium. Newton proposed the following formula for the velocity of sound through
the materials which is as follows:

v - E Elasticity
-\ P Density

Where € is the elasticity of the medium and p is the

Speed of sound in different media

density. Medium Speed ms™'
Newton assumed that when a sound wave travels | Solids at 20°C
through air, the temperature of the air during compression Lead 1320
remains constant and pressure changes from P to (P + AP) Copper 3600
i}d tl:jqreforehtht; ?-'ollume changes from V to (V — AV). Alumindom 5100
ccording to Boyle’s law Iron 5130
PV = (P+AP)(V -AV) Glass 5500

or PV = PV - PAV + VAP - APAV
The product APAV is very small and can be Liquids at 20°C

neglected. So, the above equation becomes: Methanol 1120
0 = _PAV + VAP Water 1483
P _ Yap Gasses of S.T.P.
AV =
Carbon dioxide 258
P = ot Oxygen 315
AV Air 332
\Y .
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AV .
- = Volume strain
V
Stress ) .
P = Uad .. = Elasticity

Volume strain

The above equation becomes:
\% - fll’E _ /I:)
S Ne  \p
On substituting the values of atmospheric pressure and density of air at S.T.P. in above equation,

" . " 5 - . " %
we find that the speed of sound waves in air comes out to be 280 ms™, whereas its experimental value is
=]
’1") .
AL Ims .

0.4 How laplace correct the speed of sound in air?

;54 LAPLACE CORRECTION FOR VELOCITY OF SOUND IN AIR

The sound waves travel in the form of compressions and rarefactions. The compressions and
rarefactions are so rapid, the temperature of air does not remain constant. The temperature increases due
to compressions and the temperature decreases duc to the rarefactions. Therefore during compression the
air does not lose heat due to conduction and during rarefaction it does not gain heat. Thus the
temperature throughout the medium does not remain constant. The relation between volume and
pressure (PV = Constant) is not true but it is given as

PV' = Constant
Where v is constant and its value depends upon the nature of the gas where

Molar specific heat at constant pressure
.y — -
! Molar specific heat at constant volume

If “P’ be the pressure then the change in pressure is very small which is P + AP therefore volume
decreases from V to V — AV then

(P + AP)(V — AV)' For Your Information

PV' =
Values of Constant
¥ " AV]
PVI = (P+AP)V t1 -5 Types of gas "
Applying Binomial theorem: Monoatomic 1.67
[" AV ] Diatomic 1.40
= AP = v
P (P AP)\.] "V Polyatomic 1.29
3 P = P P£+AP ‘APAV
o1 ‘ S oY Ey TAr=TYAl

For Your Information

f AV, .
Where LY AP <7+ ) is negligible. Hence, we have

'

Ranges of Hearing

AN T I’ ) VPP I Lenrursnes oo ne FLY»%
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AP Cat 60 — 70,000
o av 7 Por Dog 15— 50,000
v Human 20 — 20,000
Therefore

v o= e
p

On substituting the value of atmospheric pressure and y then the speed of the sound is 333 m/s.
This value of speed of sound is very close to the experimental value. Thus the laplace correction must
therefore be correct.

0.5 What is effect of variation of pressure on the speed of sound?

EFFECT OF PRESSURE ON SPEED OF SOUND
_m (@) *
P v p ﬁ
2
P

P — increase b
V — decreases To signal N H WAL \
generator I I ] |
- / / J ‘j a
Since density is proportional to the pressure so the speed of
sound is not affected by the variation in pressure of the gas.

p — increase
Sound waves cause the candle
0.6  What is effect of density on the speed of sound?

P xp
flame to flicker.
1T EFFECT OF DENSITY ON SPEED OF SOUND

[y P
As, vV = L
P
At the same temperature and pressure for the gases having the same value of 7y, the velocity is

inversely proportional to the square root of their density.
. 1
1.€., V o \/——
p
Speed of sound in hydrogen is four times its speed in oxvgen as density of the oxyvgen is sixteen
times that of the hydrogen.

As, V

Note:

Q.7 What is the effect of temperature on the speed of sound in air?
I EFFECT OF TEMPERATURE ON SPEED OF SOUND

When a gas is heated at constant pressure, its volume is increased and hence, its density 1s decrcased.
—
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Let, Vo = Speedofsoundat 0°C po = Density of gas at 0°C
V. = Speed of sound at t°C \ p, = Density of gas at t'C
v P . ;
then, Vo =4/ fp— ......... (1) Do You Know?
0 \Wave crests
vP
and v, = \/Z ......... (2)
Py
Dividing equation (2) by (1)
A v Plp,
Vn f Pf"pU _
Slower than the speed of sound.
Vi — yP % A@ Shock wave
Voo Alpe Ay P
Vi _ NPo
Vo b,
/R 6)
Vo \/Et

If Vg is the volume
volume at t°C, then by using volume expansion.

\% = V[)(l +Bt)

Where p is the coefficient of volume expansion of the gas. For

: ‘ 1
all gases, its value is about 273 -

' t
Hence, Vi = Vn( 1 +ﬁ)
m
As p = =
Vol ~ Mass
OMME = Density
vy =12
p
m m[ , +L)
Py Py 273

of a gas at temperature 0°C and V, is

Faster than the speed of sound.

What happens when a jet plane
like Concorde flies faster than the
speed of sound?

A conical surface of concentrated
sound energy sweeps over the
ground as a supersonic plane
passes overhead. It is known as
sonic boom.

Vi—-V,x V1t
Vi— Vo =BVt
Vi=V,+ BVt

= V(1 +pt)
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Vo Ty

Where T and T, are the absolute temperature. Corresponding to 5°C and 0°C respectively.
Thus the speed of sound is directly proportional to the square root of the absolute temperature.

Now, using Binomial theorem and neglecting high power, we have, eq. (4) as:
Vi ( L ]‘
Vo 273
Yool (5)
Vo 2 L 273

A _(H;)
Vo U 546

Ve = v+t
t - ot 546
As, Vo = 332m/s

Putting the value in the 2nd factor,

Vo = Voo
T
Vi = Vit 061t

This shows that one degree Celsius rise in temperature produces approximately 0.61 m/s (61
cm/s) increase in the speed of sound.

0.8 State the principle of superposition.
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I3 PRINCIPLE OF SUPERPOSITION

So far, we have considered single waves. What happens when
two waves encounter cach other in the same medium? Suppose two
waves approach each other on a coil of spring, one travelling towards
the right and the other travelling towards left. Figure shows that you
would see happening on the spring. The waves pass through each other
without being modified. After the encounter, each wave shape looks
just as it did before and is travelling along just as it was before.

This phenomenon of passing through each other unchanged can
be observed with all types of waves. You can easily see that it is true
for surface ripples.

But what is going on during the time when the two waves
overlap? Figure (c) shows that the displacements they produce just add
up. At each instant, the spring’s displacement at any point in the
overlap region is just the sum of the displacements that would be
caused by each of the two waves separately.

Thus, if a particle of a medium is simultaneously acted upon by
n waves such that its displacement due to cach of the individual n
waves be yi, ya, Vn, then the resultant displacement of the
particle, under the simultaneous action of these n waves is the algebraic
sum of all the displacements i.c.,

PR

This is called principle of superposition.

Again, if two waves which cross each other have opposite
phase, their resultant displacement will be
Y =yi—-»n

Particularly if y; = y» then result displacement Y = 0. Principle
of superposition leads to many interesting phenomena with waves.

For Your Information

P Wave 1
\‘_’/
Tz Wave 2

(

Super posed

XN

(

Resultant wave

YY+Y \/

Superposition of two waves of the
same frequency which are exactly
in phase.

"

>

Wave 1

N

)

Super posed of wave 1 and 2
Resultant wave
Y=0
Superposition of two waves of the

same frequency which are exactly
out of phase.

(1)  Two waves having same frequency and travelling in the same direction (Interference).

(i) Two waves of slightly different frequencies and travelling in the same direction (Beats).

(i1i) Two waves of equal frequency travelling in opposite direction (Stationary waves).

0.9 State and explain the phenomenon of interference of sound.

LT INTERFERENCE

“Superposition of two waves having the same frequency and traveling in the same direction

results in a phenomenon, called interference.” There are two types:
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Audio generator

Power amplifier

(i) Constructive Interference
“If two waves arrive at a point in phase i.c., compression of one
wave falls on compression on other wave and rarefaction of one wave
falls on the rarefaction of other wave, then resultant sound is loudest.”
or Whenever path difference is an integral multiple of wavelength
the two waves are added up. This effect is called constructive
interference.

Condition for constructive interference can be written as

AS

nai

where n +1,£2,+£3, ...
(ii) Destructive Interference

“If two waves reach a point out of phase i.e., compression of
one wave falls on the rarefaction of other wave and rarefaction of one
wave falls on the compression of other wave, then resultant sound will
be minimum.”

or At points where displacements of two waves cancel each
other’s effect, the path difference is an odd integral multiple of
half the wavelength. This effect is called destructive interference.

Condition for destructive interference is
2
AS = (2n+1) 5

where n = 0,x1,+x2,......

Explanation

Fig.(c)

Constructive interference
Large displacement is
displayed onthe CRO screen

Fig.(d)

Destructive interference
Zero displacement s
displayedonthe CRO screen

An experimental set up to observe interference effect in sound waves as shown in figure.

MThxxr lvr1d commamlrare & mamd © 0 amd e frrrm cmatrmeae af Ihoarees vsvem cma1ev o sxrmxroe b o Frivwrord Fomrvrttoaes s
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screen. The microphone is placed at various points, turn by turn, infront of the loud speakers as shown in
the figure.

At points P, P; and Ps, we find that compressions met with compressions and rarefactions. So,
the displacement of the two waves are added up at these points and large resultant displacement is
produced. At points P> and P4, compressions met with rarefactions so they cancel each other effect. The
resultant displacement becomes zero. Now we have to find the path difference between the waves at
point P, is

AS = S:P| - S|P|
R B
JAS - 42 }L - 32 )s. - )L
But AS = ni

For constructive interference.
Wheren=10,1,2,3,......

For destructive interference

AS = Sng—S.Pg
AS = Ah-33h = 3]
- \._gz )'- - 2,\-
S AS = ( +l)}
0, = _n 7 )~

Wheren=0,1,2,3,......

Q.10 What are beats? How they are produced? Show that the number of beats is equal
to the difference between the frequencies of the tuning forks.

BEATS

Beat is the combined effect of two sound waves having frequencies slightly different from each
other.

Consider two tuning forks each having frequency 32 cps. Slightly load (with wax or ring) one
tuning fork so that frequency decreases a little. Let the frequency becomes 30 cps. The two tuning forks
are sounded together and held at equal distance from the ear. Let at t = 0, the two forks are in phase. i.e.,
their right prongs moves towards right producing compressions at the same time and louder sound is
heard by the listener.

With passage of time, the tuning fork B (30 cps) begins to fall behind “A’.
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1 1
Att= 4 Sec, ‘A’ has completed & vib and ‘B’ has completed 75

vib. The prongs are now out of phase and no sound is heard due to
destructive interference.

1
Att=73 5 sec, ‘A’ has completed 16 vib and ‘B’ completes 15 vib.

- . ‘ 3
The prongs of forks become in phase and louder sound is heard. Att= 4

|
sec, ‘A’ has completed 24 vib while ‘B’ completes 225 vib. The prongs

are now in opposite phase and once again no sound is heard.

At t = 1 sec, both forks have completed 32 vib and 30 vib. The
prongs become in phase and max or louder sound is heard.

It is observed that in 1 sec, the sound falls in intensity twice. The
sudden fall of sound in intensity is known as beat. Thus two beats are
produced/sec which is equal to the difference in frequencies of two forks
(32-30=2).

Definition of Beats

The periodic alteration of sound between maximum and minimum
loudness as many times a second as the difference in frequencies is called
phenomenon of beats.

|N0 of beats/sec = Difference in frequencies|

tn = fi—13

Graphical Explanation of Beats

The displacements of the particles of the medium due to two
waves are plotted separately as function of time. The resultant
displacement of any particle will be the sum of the displacement due to
each of the two waves. The resultant wave which is produced in shown in
figure (c). It is seen that amplitude of resultant waves changes with time.
The change in amplitude gives rise to production of beat.
Uses of Phenomenon of Beats

The phenomenon of beats is used to find out:

(1)  Unknown frequency

(11)  To tune a musical instrument

>
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Write a note on reflection of waves.

Q.11

REFLECTION OF WAVES

In an extensivemedium, a wave travels in all direction from its source with a velocity depending
upon the propenies of the medium. However, when the wave comes across the boundary of two media, a
part of 1t is reﬂected back. The reflected wave has the same wavelength and frequency but its phase may

- P . 1
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Now we will discuss two most common cases of reflection at the boundary. These cases will be
explained with the help of waves travelling in slinky spring. (A slinky spring is a loose spring which has
small initial length but a relatively large extended length).

One end of the slinky spring is tied to a rigid support on a smooth A 2 :
horizontal table. When a sharp jerk is given up to the free end of the mw%
slinky spring towards the side A, a displacement or a crest will travel —>
from free end to the boundary (Figure a). It will exert a force on bound s %
end towards the side A. Since this end is rigidly bound and acts as a @ B
denser medium, It will exert a reaction force on the spring in opposite i S
direction. This force will produce displacement towards B and a trough ) «—

will travel backwards along the spring (Figure b).

From the above discussion it can be concluded that whenever a transverse wave, travelling in a
rarer medium, encounters a denser medium, it bounces back such that the direction of its displacement is
reversed. An incident crest on reflection becomes a trough.

This experiment is repeated with a little variation by attaching one A, Sinky B
end of a light string to a slinky spring and the other end to the rigid 5 s U Singh (a
support as shown in figure. If now the spring is given a sharp jerk towards - :
A, a crest travels along the spring as shown in figure. When this crest Mﬂ{bﬁ_ S

reaches the spring-string boundary, it exert a force on the string towards —£ (b)
the side it does not oppose the motion of the spring. The end of the spring, :
therefore, continues its displacement towards A. The spring behaves as if it WQ‘,}W_%_____
has been plucked up. In other words a spring crest is again created at the —— K@

boundary of the spring-string system, which travels backwards along the spring. From this it can be
concluded that when a transverse wave travelling in a denser medium, is reflected from the boundary of
a rarer medium, the direction of its displacement remains the same. An incident crest is reflected as a
crest. We are already familiar with the fact that the direction of displacement is reversed when there is
change of 180° in the phase of vibration. So, the above conclusion can be written as follows:
(1) If a transverse wave travelling in a rarer medium is incident on a denser medium, it is
reflected such that it undergoes a phase change of 180°.
(1) If a transverse wave travelling in a denser medium is incident on a rarer medium, it is
reflected without any change in phase.

Q.12 What are stationary waves? How they one produced? Define node and anti-node.

I STATIONARY WAVES

Now let us consider the superposition of two waves moving along a string in opposite directions.
Figure (a, b) shows the profile of two such waves at instants = 0, T/4, 3/4 T and T, where T is the time
period of the wave. We are interested in finding out the displacements of the points 1, 2, 3,4, 5, 6 and 7
at these instants as the waves superpose. From the figure (a, b), it is obvious that the points 1, 2, 3, etc.,
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t=0 t=T/4 t=T/2 t=3T/4 t=T
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-, always
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arc distant A/4 apart, & being the wavelength of the waves. We can determine the resultant displacement
of these points by applying the principle of superposition. Figure (c) shows the resultant displacement of
the points 1, 3, 5 and 7 at the instants t = 0, T/4, T/2, 3T/4 and T. It can be scen that the resultant
displacement of these points is always zero. These points of the medium are known as nodes. Figure (c)
shows that the distance between two consecutive nodes is A/2. Figure (d) shows the resultant
displacement of the points 2, 4 and 6 at the instant t = 0, T/4, T/2, 3T/4 and T. The figure shows that
these points are moving with an amplitude which is the sum of the amplitudes of the component waves.
These points are known as antinodes. They are situated midway between the nodes and are also A/2
apart. The distance between a node and the next antinode is 2/4. Such a pattern of nodes and antinodes is
known as a stationary or standing wave.

Energy in a wave moves because of the motion of the particles of the medium. The nodes always
remain at rest, so energy cannot flow past these points. Hence energy remains “standing” in the medium
between nodes, although it alternates between potential and kinetic forms. When the antinodes are all at
their extreme displacements, the energy stored is wholly potential and when they are simultancously
passing through their equilibrium positions, the energy is wholly kinetic.

An easy way to generate a stationary wave is to superpose a wave travelling down a string with
its reflection travelling in opposite direction as explained in the next section.

Q.13 Explain the stationary waves in a stretched string. Also calculate the frequencies.
STATIONARY WAVES IN A STRETCHED STRING

Consider a string of length /> which is kept stretched by clamping its ends so that the tension in
the string is F. If the string is plucked at its middle point, two transverse waves will originate from this
point. One of them will move towards the left end of the string and the other towards the right end.
When these waves reach the two clamped ends, they are reflected back, thus giving rise to stationary
waves. The string will vibrate with such a frequency f), so that nodes are formed at two fixed ends
(clamped ends) and anti-nodes between them. Thus the string vibrates in one loop as shown in Fig.

If 2, is the wavelength of this mode of vibration (1st mode of vibration) so,
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As I = }7' fe ! >
N Pluck
Moo= 20 (i) I: ' J
vV =Aif A
_y N}.//\_.hl
fl B 7‘»| ............... )
Putting value of %;. 3
v k =3 4
fi T 9] e (1) A =20

The speed “V’ of the waves in the string depends upon the tension F of the string and mass per
unit length of the string. [t is given by

V=-\/E
m

¢ \/F/m
l

1 F
i =5 \/% ......... (111)

If the string 1s plucked from 1 of its length, then again stationary waves will be set up, but now

the string vibrate in two loops with f5. If A, is wave length in this case then,

A / = }“—3+}'—2
S, - 272
Aa+ ks
L=73
20
1=
_ 114
o=k : -
I “1
h = o

Putting value of 2,

L 17 1 '.'-:- |
f} = 2 ( ] I n ™ B i

f—— =l
f = 2f1 I'=2+"Z

1 [

This shows that when string vibrates in two loops, its frequency is doubled and wave length
becomes half than it vibrates in one loop.
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1
Similarly if the string is plucked from o th of its length, it

vibrates in three loops as shown in figure.

As Lo =515t
ok
/ =3 5
2/
;L_?, = ?
V
Putting value of s
LoV
3 2173
. V
f3 = 3(5)
f], = 3f|

It means that when string vibrates in three loops, its frequency
is three times the frequency when it vibrates in one loop.

Thus we can generalize that if the string 1s made to vibrate in
‘n’ loop, then

fi = nf
and wave length is;
Lo
" n
wheren=1,2,3,......

It is clear that as the string vibrates in more and more loops, its
frequency goes on increasing and the wave length gets shorter.
However the product of frequency and wave length is always equal to
V, (speed of the wave).

The above discussion clearly establishes that the stationary
waves have a discrete set of frequencies f, 27, 3£, ......... , n f; which
1s known as harmonic series. The fundamental frequency ‘f}" is called
first harmonic (over tone), ‘f;’ is called second harmonic (over tone),
and so on.

Note: The frequency of a string on a musical instrument can be
changed either by varying the tension or by changing the
length. For example the tension in guitar and violin strings is

. - W . oy 7 - -

7 1 1 T -

le—
»

A standing-wave pattern is
formed when the length of the
string is an integral multiple of
half wavelength; otherwise no
standing wave is formed.

For Your Information

s s e

In an organ pipe, the primary
ldrivina moaechaniem iec wavaring
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Q.14 Describe the stationary waves in air column.

TR STATIONARY WAVES IN AIR COLUMNS

Stationary waves can be set in other media also, such as air
column. A common example of vibrating air column is in the organ ><

pipe. The relationship between the incident wave and the reflected

wave depends on whether the reflecting end of the pipe is open or "Z% ' =§
closed. If the reflecting end 1s open, the air molecules have complete (a)
freedom of motion and this behaves as an antinode. If the reflecting _—~————
end is closed, then it behaves as a node because the movement of the ><><
molecules is restricted. The modes of vibration of an air column in a “—
pipe open at both ends are shown in figure. =k ;)l-‘ S
In figure, the longitudinal waves set up in the pipe have been - .-H( .) - o
represented by transverse curved lines indicating the wvarying XXX
amplitude of vibration of the air particles at points along the axis of
the pipe. However, it must be kept in mind that air vibrations are = sj 1, ::_\
longitudinal along the length of the pipe. The wavelength “A," of nth “(©) 2
harmonic and its frequency ‘f;” of any harmonic is given by Fig. Stationary longitudinal waves
in a pipe open atboth ends.
, _ 2 . _ N _ v
Ao = , b = N - 2 (1)
n = 1,2,3,4,......

where ‘v’ is the speed of sound in air and ‘/* is the length of the pipe. The equation (10 can also be
written as

ft, =naf . (2)
If a pipe is closed at one end and open at the other, the closed !
end is a node. The modes of vibration in this case are shown in figure. E
In case of fundamental note, the distance between a node and -
antinode is one fourth of the wavelength, [= ’1 - f) = _%/-
5 (a)
Hence, ! =3 or Moo= 4l - .
i v \i jo3h g 3y
Hence, f| VY, )
A ' (b)

It can be proved that in a pipe closed at one end, only odd
harmonics are generated, which are given by the equation.

i nv 3)

n = a1 e o o 5}\. F - 5_\!
4/ [==F 6=

where n = 1,3,5,...... (c)

. . L. o Fig. Stationary longitudinal waves
This shows that the pipe, which is open at both ends, is richer in a pipe closed at one end. Only
n harmonics. odd harmonics are present.
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In 1*" mode
2}\.-]
L=
h
I =3
?L.[ = 2!
As, VvV = if
V
f| = 5
A
Putting value of ‘A,
\%
i =7
In 2™ mode
B Ao+ 2+ ks
= 4
4}u_1
I =7
/ = >
. _ N
Multiply and divided by (2).
v
b= 2(21)
In 3" mode
; A3t 20+ 2k + 2
- 4
67‘\.3
L=y
S}u‘\
/ = 5
2/
=3
. V
AS, f_; = N
A3
Putting value of A;
.V
b =33
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Case 11
When pipe is open at one end and closed at other end.
In 1™ mode

7'..[ = 4[
V
f) = N
Putting value of &,
. v
Y
nd .
In 27 mode s Interesting Information
2, A2 - . 3 Z=
L=
A+ 2h;
=7
3k,
L=
, _ 4
Ao =3
)\
f =
%)
Putting value of %,
b =43 : ' . Y
IV Echolocation allows dolphins to
3 = — detect small differences in the
. 41 shape, size and thickness of objects.
i = 3(f)
We can generalize,
g =21V
T4

where n = 1,3,5, ......

Note: The pipe which is open at both ends is richer in harmonics.

Q.15 What is Doppler effect? Describe expression for apparently changed frequency
when the observer is at rest while the source is in motion. (OR) What is Doppler
effect? Describe the expression for apparently changed frequency when the
observer is in motion while source is at rest.

FT3 DOPPLER EFFECT

Introduction

This effect was observed by Johann Doppler while he was observing the frequency of light

armrtbad Bare diofant cfare T coma nacso thie Saanamsty oF ot amitbad Boavy o otar werae Feammd $n Ba
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Definition

“The apparent change in the pitch OR frequency of a source of sound, when there is a relative
motion between the source of sound and the observer, is called Doppler effect.”

For example, when an observer is standing on a railway platform, the pitch of the whistle of a
approaching train is heard to be higher. But when the same train moves away, the pitch of the whistle
becomes lower.

Explanation

Suppose “V’ is the velocity of the sound in a medium and a source emits a sound of frequency

‘f" and wave length “A’. If both the source and the observer are stationary, then the waves received by
the observer in one second are;

Case-A

When observer ‘O’ is moving towards a stationary source ‘S’ Observer

If an observer (‘O’) moves towards, a source ‘S’ with
velocity Uy, the relative velocity of the waves and the observer is
increased to (V + Up), then number of waves received in one second
apparent frequency increases

f .
A }“
Putting the value
f _ @ e = ! Fig. An observer moving with
A V/f L f velocity u, towards a stationary
source hears a frequency f, that is
f,\ - (u‘_’ )f greater than the source frequency.
: \%
V + U
— = >
Hence, v 1
fa > f

This means that when an observer *O” 1s moving towards a stationary source S, the frequency
of sound increases.

Case-B

When observer ‘O’ moves away from a stationary source S
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When observer ‘O moves away from stationary source S’ Observer
with velocity ‘Uy,” then relative velocity of sound waves and the T
observer is, (V — Up), hence, number of waves received by the // e
. . / g
observer, per—second are reduced and is given by ;S =
V-U AV
. r / ) Fi S
fy, = 0 I DA
/'- 1 \ u, =
IIl| .‘~
Putting value of Nl T r )
N Sy
. Vv . T .
A = f —
Fig. An observer moving with
£ - V-U velocity u, away from stationary
B VI source hears a frequency fg thatis

. smallerthan the source frequency.

V-uU
fy = (7")f

V-Up
Vv
fr < f

This means that when observer ‘O’ moves away from stationary source ‘S,” the apparent
frequency decreases.

Case-C

When source ‘S’ is moving towards the stationary observer ‘0’

As,

If the source “S’ is moving towards the observer with velocity ‘U’ then in one second, the waves
arc compressed, (Wave length decreases), by an amount known as Doppler shift represented by Ah.

As, vV = fi ' oY

A = f =)

{Uu =)
The compression of waves is due to the fact that same !
number of waves are contained in a shorter space depending g o
upon the velocity of the source. I

The wave length for observer *C” is then, A, = A — AL PR Y U ¢ Y —
Putting the values of A and AA.

. _Y. U

£ f
VU

he = "%

The modified frequency for observer ‘C’ is
.Y
N
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Putting value of A
V
e =y,
f
L= (g )
© AV -U
As L =
bg V - US -
f. > f

This means that the observed frequency increases when the

source 1s moving towards the observer.
Case-D
When source 'S’ is moving away from stationary observer ‘O’

If the source is moving away from the
observer ‘O with velocity ‘Us,” then in one second
the waves are stretched (wave length increase) by an
amount Ah.

Us
A}L = ?

The stretched of the waves is due to the fact that
same number of wave are contained in larger (longer)

bserver C

S
(1]

Observer D \ U,

Fig. A source moving with velocity
u, towards a stationary observerC
and away from stationary
observer D. Observer C hears an
increased and observer D hears a
decreased frequency.

space, depending upon the velocity of the source.
The wave length for observer ‘D’ is, Ap = A + Ak,
Putting values of 4 and AA.

hp = Y + Iis
. VU,
oD = f
The modified frequency for observer ‘D’ will be
V
fD = E
Putting value of Ap
vV
b = V50,
R
. v .
f[_) = (V + U;‘- )f
V
As, V+U. + U < 1
i < f

This means that the observed frequency decreases, when the

PP SCHPU. [P D I .. PO PG - CUPURTIV | PSP, SN COu U

De You Know?

acoustic
coupling
gel ..

T

transmitted*”
signal

blood vessel”

The Doppler effect can be used to
monitor blood flow through major
arteries. Ultrasound waves of]
frequencies 5 MHz to 10 MHz are
directed towards the artery and a
receiver detects the back
scattered signal. The apparent
frequency depends on the
velocity of flow of the blood.
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APPLICATIONS OF DOPPLER EFFECT

Doppler effect is applied in working of radar system. Radar
uses radio waves to find the elevation and speed of an aeroplane. Radar
1s a device which transmits and receives radio waves. The radio waves
transmitted from radar are reflected back from aeroplane and are
received by radar. If the aeroplane is moving towards the radar then the
wavelength of reflected wave is shorter. If the plane is moving away
from the radar then the wavelength of reflected wave is longer as shown
in figure.

The difference of wavelength of transmitted and reflected
waves 1s used to determine the speed of aeroplane. Term SONAR (is
acronym) stands for sound navigation and ranging. Sonar is the name
of the technique used for detecting the presence of objects under water
by acoustical echo. In Sonar “Doppler detection™ depends upon
relative speed of the target and the detector. It employs. The Doppler
effect in which an apparent change in frequency occurs when source
and observer are in relative motion with respect to one another.

In military it is used for detection and location of submarine
antisubmarine weapons and depth measurement of sea. Astronomers
use Doppler effect to calculate the speeds of distant stars and galaxies.
By comparing the line spectrum of light from the star with light from a
laboratory source, the Doppler shift of stars light can be measured.
Then speed of star can be calculated.

Doppler effect is used to determine whether a particular star or
galaxy is approaching the earth or moving away from the earth. Light
from the star is measured with the help of spectrometer. It has been
found that stars moving towards the earth show a blue shift. Thus is
because the emitted waves by the star have shorter wavelength than of
the star had been at rest. So the spectrum is shifted towards shorter
wavelength i.e., to the blue end of the spectrum.

It has been found that stars moving away from the earth show a red
shift. This is because the emitted waves by the star have longer
wavelength than of the star had been at rest. So the spectrum is shifted
towards longer wavelength i.e., to the red end of the spectrum.
Astronomers have discovered that all the distant galaxies are moving
away from us. They have also measured their speed by measuring their
red shift. Another important application of the Doppler shift using
electromagnetic waves is radar speed trap. Microwaves are emitted
from a transmitter in the form of short bursts. Each burst is reflected
back by any moving car in the path of microwaves. The reflected
microwaves arc received back as Doppler’s shift. By measuring
Doppler shift the speed of the car can be calculated by computer
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A frequency shift is used in a radar to
detect the motion of an aeroplane.
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Do You Know?




