Wave motion

Mechanical waves

(a)

(c)

1.

WAVES

Wave

Sound waves

Each question has fou	r possible answers,	encircled the	correct answer:
-----------------------	---------------------	---------------	-----------------

The mechanism in which energy is transferred from one place to another place is called:

(b)

(d)

2.	The 1	particle of the medium vibrates in longitudinal waves:					
	(a)	Along the direction of wave motion	(b)	Do not vibrate at all			
	(c)	Opposite the direction of wave motion	(d)	Perpendicular to the direction of wave motion			
3.	The	The waves which required certain medium for their propagation are called:					
	(a)	Matter waves	(b)	Mechanical waves			
	(c)	Water waves	(d)	Wave motion			
4.	The	waves which do not required any mediu	m for	their propagation are called:			
	(a)	Electromagnetic waves	(b)	Light waves			
	(c)	X-rays	(d)	Radio waves			
5.	5. The waves associated with particles in motion are called:						
	(a)	Light waves	(b)	Electronic waves			
	(c)	Matter waves	(d)	Light waves			
6.	Elect	trons moving with high velocities behave	e like	:			
	(a)	Mechanical waves	(b)	Electronic waves			
	(c)	Matter waves	(d)	Light waves			
7.	A me	echanical wave is represented by:					
	(a)	Light	(b)	Heat			
	(c)	Compressional waves	(d)	None of the above			
8.	A wa	ave which transfer energy in moving fro	m the	e source of disturbance is called:			
	(a)	Travelling waves	(b)	Matter waves			
	(c)	Water waves	(d)	Radio waves			
9.	Whe	n the amplitude of the wave becomes de	ouble	, its energy becomes:			
	(a)	Four times	(b)	One half			
	(c)	Double	(d)	Nine times			

OBJE	CTIVE	PHYSICS PART-I		203			
21.	Pass	Passage of waves from one medium into another is called:					
	(a)	Reflection	(b)	Refraction			
	(c)	Transmission	(d)	Diffraction			
22.	If 30	If 30 waves per second pass through a medium at a speed of 30 m/s, wavelength of these waves is:					
	(a)	30 m	(b)	15 m			
	(c)	1 m	(d)	280 m			
23. 9	Dist	Distance between two consecutive nodes is:					
	(a)	λ	(b)	$\frac{\lambda}{2}$			
	(c)	$\frac{\lambda}{4}$	(d)	2λ			
24. 9	The	The point at which the displacement of the wave is zero called:					
	(a)	Node	(b)	Trough			
	(c)	Anti-node	(d)	Crest			
25.	The	The point at which the displacement of the wave is maximum called the:					
	(a)	Node	(b)	Trough			
	(c)	Anti-node	(d)	Crest			
26.	Whe	When two identical waves are superposed, the velocity of the resultant wave:					
	(a)	Becomes zero	(b)	Remains unchanged			
	(c)	Increased	(d)	Decreased			
27.		When two similar waves moving along the same line in opposite direction are superposed, they give rise to:					
	(a)	Stationary waves	(b)	Longitudinal waves			
	(c)	Compressed waves	(d)	Travelling waves			
28. ♀	The distance between two consecutive anti-node is:						
	(a)	λ	(b)	2λ			
	(c)	$\frac{\lambda}{4}$	(d)	$\frac{\lambda}{2}$			
29.	The	The stationary waves consists of:					
	(a)	Crest and troughs	(b)	Nodes and anti-nodes			
	(c)	Reflection & refraction	(d)	None of these			
30.	Wat	Water waves are:					
	(a)	Stationary waves	(b)	Longitudinal waves			
	(c)	Electromagnetic waves	(d)	Transverse waves			
31.	When a transverse wave is reflected on going from a denser to a rare medium, then:						
	(a)	There is a 180° phase shift	(b)	There is no change in path			
	(c)	A trough is converted into a crest	(d)	A crest is converted into a trough			

32. When stationary waves are setup in a cord which is fixed at both ends, the points which always remain at rest is called:

(a) Nodes

(b) Anti-nodes

(c) Both (a) & (b)

(d) None of these

33. Expression for Newton's formula for speed of sound is:

(a) $v = \sqrt{\frac{E}{\rho}}$

(b) $v = \sqrt{\frac{\rho}{E}}$

(c) $v = \sqrt{\frac{E\gamma}{\rho}}$

(d) $v = \sqrt{\frac{\rho \gamma}{E}}$

34. The speed of sound waves is independent of:

(a) Pressure

(b) Source of sound

(c) Medium

(d) Temperature

35. The speed of sound in air proposed by Newton is:

(a) 280 m/s

(b) 332 m/s

(c) 333 m/s

36.

(d) None of the above

Newton's formula for the speed of sound is corrected by:

(a) Graham Bell

(b) Laplace

(c) Huygen

(d) Weber-Fechner

37. If E is the modulus of elasticity and ρ is the density then the speed of sound is:

(a) $\sqrt{\frac{1}{E\rho}}$

(b) $\sqrt{\frac{E}{\rho}}$

(c) $\sqrt{E\rho}$

(d) $\sqrt{\frac{\rho}{E}}$

38. Laplace expression for the speed of sound in gas is:

(a) $v = \sqrt{\frac{\rho P}{\gamma}}$

(b) $V = \sqrt{\frac{\rho \gamma}{P}}$

(c) $v = \sqrt{\frac{P}{\gamma \rho}}$

 $(\mathbf{d}) \quad \mathbf{v} = \sqrt{\gamma P \rho}$

39. \bigcirc The velocity of sound in air at \bigcirc C is:

(a) 332 m/s

(b) 300 m/s

(c) 322 m/s

(d) 280 m/s

40. Velocity of sound in vacuum is:

(a) Zero

(b) 332 m/s

(c) 280 m/s

(d) 325 m/s

The speed of sound waves in a medium depends upon:

(a) Density of medium

(b) Amplitude of the particle

(c) Elasticity of medium

(d) Both density and elasticity of medium

42. The velocity of sound is greatest in:

(a) Steel

(b) Air

(c) Iron

(d) Water

43. For all gases:

41.

 $\mathbf{(a)} \quad \mathbf{v_t} = \mathbf{v_0} \left(1 - \frac{\mathbf{t}}{273} \right)$

(b) $V_t = V_0 \left(1 + \frac{t}{273} \right)$

 $\mathbf{(c)} \quad \mathbf{v_t} = \mathbf{v_0} \left(1 + \frac{273}{t} \right)$

(d) $v_t = v_0 (1 + 273 t)$

44. For temperature:

 $(a) \quad \frac{\mathbf{v}_{t}}{\mathbf{v}_{0}} = \sqrt{\frac{\mathbf{T}}{\mathbf{T}_{0}}}$

(b) $\frac{\mathbf{v}_{\mathrm{t}}}{\mathbf{v}_{\mathrm{0}}} = \sqrt{\frac{\mathbf{T}_{\mathrm{0}}}{\mathrm{T}}}$

 $(c) \quad \frac{\mathbf{v_t}}{\mathbf{v_0}} = \frac{\mathbf{T}}{\mathbf{T_0}}$

 $(\mathbf{d}) \quad \frac{\mathbf{V}_{t}}{\mathbf{V}_{0}} = \mathbf{T}\mathbf{T}_{0}$

45. For small temperature changes, velocity of sound can be determined by the relation:

(a) $V_t = V_0 + 0.61 t$

(b) $V_t = V_0 + 61t$

(c) $V_t = V_0 + 2t$

(d) All of the above

46. Increase in velocity of sound in air for 1°C rise in temperature is:

(a) 0.61 m/s

(b) 61.0 m/s

(c) 1.61 m/s

(d) 2.00 m/s

47. The speed of sound is greater in solids than in gases due to their high:

(a) Temperature

(b) Pressure

(c) Density

(d) Elasticity

48. Which of the following properties for sound is affected by change in air temperature:

(a) Wavelength

(b) Intensity

(c) Amplitude

(d) Frequency

49. The superposition of a number of harmonic waves form:

(a) Standing waves

(b) Complex waves

(c) Transverse waves

(d) Matter waves

50. At the closed end of an air column, node occurs:

(a) Never

(b) Always

(c) In certain case

(d) None of these

OBJE	CTIVE	PHYSICS PART-I		208				
73.	The	pitch of sound depends upon:						
	(a)	Loudness of sound	(b)	Wavelength of sound				
	(c)	Intensity of sound	(d)	Frequency of sound				
74.	Lou	dness of sound depends upon:						
	(a)	Frequency	(b)	Pitch				
	(c)	Intensity of sound & ear	(d)	Ear alone				
75.	The	The number of beats produced per second is equal to:						
	(a)	The difference of frequencies of two tuning forks						
	(b)	The sum of the frequencies of two tuning forks						
	(c)	The ratio of the frequencies of two tuning forks						
	(d)	None of these						
76.		Two tuning forks of frequencies 260 Hz and 257 Hz are sounded together, the number of beats per second is:						
	(a)	3	(b)	4				
	(c)	2	(d)	Zero				
77.		The apparent change in frequency as heard by an observer when there is relative motion between the source and observer is known as:						
	(a)	Compton effect	(b)	Photo electric effect				
	(c)	Doppler effect	(d)	None of these				
78.	Rad	Radar system is the application of:						
	(a)	Photoelectric effect	(b)	Doppler effect				
	(c)	Compton effect	(d)	None of these				
79.	Dop	Ooppler's effect applies to:						
	(a)	Light waves only	(b)	Sound waves only				
	(c)	Both sound and light waves	(d)	None of these				
80.		When Doppler's effect is applied to electromagnetic waves source approaching the observer at rest represents:						
	(a)	Identical situations	(b)	Different situations				
	(c)	No change	(d)	None of these				
81.	Who	When source of sound approaches the listener at rest, the frequency of sound received by him is:						
	(a)	Less than the frequency of sound produced by source						
	(b)	Greater than the frequency of sound produced by source						
	(c)	Same as that produced by source						
	(d)	Zero						
82.	Whe	When the source of sound moves away from a stationary listener, then there is:						
	(a)	An apparent increase in frequency	(b)	An apparent decrease in frequency				
	(c)	An apparent decrease in wavelength	(d)	No apparent change in frequency				

83. When a listener is moving with velocity u_0 towards the stationary source of sound of frequency f the speed of sound in air is V then changed frequency of the sound is given by:

$$(a) \quad f' = \frac{V}{V + u_0} f$$

(b)
$$f' = \frac{V}{V - u_0} f$$

$$(c) f' = \frac{V - u_0}{V} f$$

$$(d) \quad f' = \frac{v + u_0}{v} f$$

84. When a listener is moving away with velocity u_o from the stationary source of sound of frequency f the speed of sound in air is v then the changed frequency of sound is given by:

$$(a) \quad f' = \frac{V + u_0}{V} f$$

(b)
$$f' = \frac{V - u_0}{V} f$$

(c)
$$f' = \frac{V}{V + u_0} f$$

(d)
$$f' = \frac{V}{V - u_0} f$$

- **85.** A source of waves which gives out pure note means that it gives out:
 - (a) Mixture of frequency

(b) Quantum frequencies

(c) Single frequency

- (d) None of these
- **86.** When the difference between the frequencies of two sounds is more than about ———. Then it becomes difficult to recognize beats:
 - (a) 15 Hz

(b) 10 Hz

(c) 5 Hz

87.

- (d) 20 Hz
- Dog hears sound which ranges:
 - (a) $150 150000 \,\mathrm{Hz}$

(b) 100 – 12000 Hz

(c) 50 - 70000 Hz

- (d) $15 50000 \,\mathrm{Hz}$
- **88.** Cat hears sound which ranges:
 - (a) $60 7000 \,\mathrm{Hz}$

(b) 60 - 70000 Hz

(c) 15 - 50000 Hz

- (d) $150 150000 \,\mathrm{Hz}$
- **89.** Speed of sound in hydrogen at 20°C at STP is:
 - (a) 332 m/s

(b) 280 m/s

(c) 258 m/s

- (d) 333 m/s
- **90.** Speed of sound in iron at 20°C is:
 - (a) 5130 m/s

(b) 5230 m/s

(c) 5030 m/s

- (d) 3600 m/s
- **91.** \P The distance between a node and antinode:
 - (a) 7

 $\mathbf{b}) \quad \frac{7}{2}$

(c) $\frac{\lambda}{4}$

(d) $\frac{3\lambda}{2}$

113.	When two notes of frequencies f_1 and f_2 are sounded together, beats are formed if $f_1 > f_2$ then the
	frequency of beat is:

(a)
$$f_1 + f_2$$

(b) $\frac{1}{2}(f_1+f_2)$

(c)
$$f_1 - f_2$$

(d) $\frac{1}{2}(f_1-f_2)$

114. The speed of sound at 30° c is approximately equal to:

(a) 332 ms^{-1}

(b) 335 ms^{-1}

(c) 340 ms^{-1}

(d) 350 ms^{-1}

An air column in a pipe, which is closed at one end, will be in resonance with a vibrating tuning fork of frequency 250 Hz. The length of the column in cm is (Velocity of sound in air = 340 ms^{-1})

(a) 21.25

(b) 125

(c) 62.50

(d) 33.2

116. The minimum length of a closed pipe which can resound with a note of wavelength 1 m is:

(a) 0.25 m

(b) 0.5 m

(c) 0.75 m

(**d**) 1 m

117. A particle executes S.H.M. with a period of 6 s and amplitude of 3 cm. Its maximum speed in cm/s is:

(a) $\frac{\pi}{2}$

(b) π

(c) 2π

(d) 3π

118. The end correction of a resonance column is 1 cm. If the shortest length resonating with a tunning fork is 15 cm, then the next resonating length is:

(a) 45 cm

(b) 31 cm

(c) 46 cm

(d) 47 cm

119. The ratio of the velocity of sound in air at 4 atmosphere and that at 1 atmosphere pressure would be:

(a) 1:1

(b) 4:1

(c) 1:4

(d) 3:1

120. A string of length l, fixed at both ends is vibrating in two segments. The wavelength of the corresponding wave is:

(a) $\frac{l}{2}$

(b) $\frac{l}{2}$

(c) *l*

(d) 2*l*

121. The frequency of waves produced to microwave oven is:

(a) 1435 MHz

(b) 2450 MHz

(c) 1860 MHz

(d) 2850 MHz

ANSWERS

1.	(a)	2.	(a)	3.	(b)	4.	(a)
5.	(c)	6.	(c)	7.	(c)	8.	(a)
9.	(a)	10.	(b)	11.	(d)	12.	(b)
13.	(d)	14.	(b)	15.	(a)	16.	(c)
17.	(a)	18.	(c)	19.	(a)	20.	(c)
21.	(c)	22.	(c)	23.	(b)	24.	(a)
25.	(c)	26.	(b)	27.	(a)	28.	(c)
29.	(b)	30.	(d)	31.	(c)	32.	(a)
33.	(a)	34.	(a)	35.	(a)	36.	(b)
37.	(b)	38.	(a)	39.	(a)	40.	(a)
41.	(d)	42.	(a)	43.	(a)	44.	(a)
45.	(a)	46.	(a)	47.	(d)	48.	(a)
49.	(a)	50.	(b)	51.	(b)	52.	(b)
53.	(b)	54.	(c)	55.	(d)	56.	(c)
57.	(d)	58.	(d)	59.	(d)	60.	(b)
61.	(a)	62.	(a)	63.	(c)	64.	(c)
65.	(c)	66.	(c)	67.	(c)	68.	(c)
69.	(b)	70.	(a)	71.	(d)	72.	(c)
73.	(d)	74.	(c)	75.	(a)	76.	(a)
77.	(c)	78.	(b)	79.	(c)	80.	(a)
81.	(b)	82.	(b)	83.	(d)	84.	(b)
85.	(c)	86.	(b)	87.	(d)	88.	(b)
89.	(c)	90.	(a)	91.	(c)	92.	(b)
93.	(d)	94.	(b)	95.	(b)	96.	(b)
97.	(a)	98.	(b)	99.	(b)	100.	(a)
101.	(c)	102.	(c)	103.	(d)	104.	(c)
105.	(c)	106.	(a)	107.	(c)	108.	(d)
109.	(d)	110.	(d)	111.	(d)	112.	(d)
113.	(b)	114.	(d)	115.	(d)	116.	(c)
117.	(c)	118.	(d)	119.	(a)	120.	(c)
121.	(b)						
							_