Huygen

Newton

(a)

(c)

1.

2.

3.

4.

5.

6.

7.

8.

9.

PHYSICAL OPTICS

Maxwell

Thomas young

Each question has four possible answers, encircled the correct answer:

(b)

(d)

The carpuscular nature of light was given by:

Ligh	ght is the source to:								
(a)	Create energy	(b)	Destroy energy						
(c)	Carry energy	(d)	All of above						
Wav	e theory of light was proposed by:								
(a)	Thomas young	(b)	Huygen						
(c)	Newton	(d)	Maxwell						
Acco	According to Newton, light travels in the form of:								
(a)	Photons	(b)	Waves						
(c)	Carpascular	(d)	Electrons						
Huyg	ygen proposed that light travels in spaced by means of wave motion in:								
(a)	1960	(b)	1690						
(c)	1680	(d)	1670						
Light is the type of:									
(a)	Momentum	(b)	Velocity						
(c)	Energy	(d)	Acceleration						
The	The light reaches the earth from the sun in plane:								
(a)	Amplitude	(b)	Frequency						
(c)	Wavelength	(d)	Wavefronts						
In in	interference and diffraction of light, the waves and wavefronts considered as:								
(a)	Cylindrical	(b)	Conical						
(c)	Spherical	(d)	Plane						
Huygen principle is used to explain the:									
(a)	Dispersion of light	(b)	Reflection of light						
(c)	Speed of light	(d)	Propagation of light						

- **32.** When the crest of one wave falls on the crest of the other waves, this phenomena is known as:
 - (a) Polarisation

- (b) Dispersion
- (c) Constructive interference
- (d) Destructive interference
- 33. When crest of one wave falls over the trough of other wave, this phenomenon is known as:
 - (a) Diffraction

- **(b)** Polarisation
- (c) Constructive interference
- (d) Destructive interference
- **34.** Interference produced by reflected light in thin films is constructive when path difference is:
 - (a) $d \sin \theta = m\lambda$

(b) $d \sin \theta = \left(m + \frac{1}{2}\right)\lambda$

(c) $d \sin \theta = \left(m - \frac{1}{2}\right) \lambda$

- (d) $2d \sin \theta = m\lambda$
- **35.** In order to get interference of light waves:
 - (a) The sources should be monochromatic
 - **(b)** The sources should be phase coherent
 - **(c)** The law of super-position should be applicable
 - (d) All of above
- **36.** The condition for constructive interference of two waves is that the path difference should be:
 - (a) Integral multiple of λ

- **(b)** Integral multiple of $\frac{\lambda}{2}$
- (c) Even integral multiple of λ
- (d) None of these
- 37. The condition for destructive interference of two waves is that the path difference should be:
 - (a) Integral multiple of λ

- **(b)** Integral multiple of $\frac{\lambda}{2}$
- (c) Odd integral multiple of $\frac{\lambda}{2}$
- (d) None of these
- 38. In young's double slit experiment, the path difference for bright fringe is:
 - (a) $d \cos \theta = m\lambda$

(b) $d \sin \theta = m\lambda$

(c) $d \sec \theta = m\lambda$

- (d) $d \tan \theta = m\lambda$
- **39.** In young's double slit experiment, the path difference for dark fringe is:
 - (a) $d \sin \theta = \left(m \frac{1}{2}\right)\lambda$

(b) $d \sin \theta = m\lambda$

(c) $d \sin \theta = \left(m + \frac{1}{2}\right) \lambda$

- (d) $d \tan \theta = \left(m + \frac{1}{2}\right) \lambda$
- **40.** The distance between two adjacent bright or dark fringes is:
 - (a) $\Delta y = \frac{L\lambda}{d}$

(b) $\Delta y = \frac{\lambda}{d}$

(c) $\Delta y = \frac{\lambda}{Ld}$

(d) $\Delta y = Ld\lambda$

In young's double slits experiment, the fringe spacing is: 41.9

$$(a) \quad \Delta y = \frac{d}{\lambda D}$$

(b)
$$\Delta y = \frac{2\lambda d}{D}$$

(d) $\Delta y = \frac{\lambda d}{D}$

(c)
$$\Delta y = \frac{\lambda D}{d}$$

(d)
$$\Delta y = \frac{\lambda c}{D}$$

42. In young's experiment if white light is used:

- Dark fringe will be seen (a)
- Bright fringe will be seen (b)
- (c) Alternate dark and bright fringes will be seen
- (d) No fringe will be seen

The distance between any two consecutive bright fringes is called: 43.

> (a) Wavelet

Fringe spacing **(b)**

(c) **Amplitude** (d) Wavelength

The interference fringe spacing depends upon: 44.

> Separation between the sources (a)

The wavelength of light used **(b)**

(c) The distance of screen from the source (d)

All of above

A thin film is transparent medium whose thickness is comparable with wavelength of: **45.**

Sound (a)

Heat (b)

(c) Light (d) None of these

A thin layer of oil on the surface of water looks coloured due to: 46.

> Transmission of light (a)

Polarization of light **(b)**

Interference of light (c)

None of these (d)

Soap film in sunlight appears coloured due to: 47.

> Diffraction of light (a)

Scattering of light **(b)**

Interference of light (c)

Dispersing of light (d)

Brilliant and beautiful colours in soap bubbles on surface of water are due to: 48.

Interference of heat (a)

Interference of light **(b)**

Interference of sound

All of the above (d)

A white light passed through a prism is: 49.

> (a) Polarized

(b) Dispersed

Diffracted (c)

Deviated (d)

50. Newton's rings are formed due to:

> Reflection of light (a)

(b) Polarization of light

Interference of light (c)

Diffraction of light (d)

The formula for grating element is:

(a) $d \sin \theta = \lambda$

62.

66.

67.

70.

(b) $d \sin \theta = m\lambda$

(c) $d \sin \theta = \frac{3}{2} \lambda$

(d) $md \sin \theta = \lambda$

63. The condition for constructive interference in case of diffraction grating:

(a) $d \sin \theta = m\lambda$

(b) $2d \sin \theta = m\lambda$

(c) $d \sin \theta = \frac{m}{\lambda}$

(d) $d \sin \theta = 2m\lambda$

64. Interference effects of light were verified by:

(a) Thomas young

(b) Newton

(c) Einstien

(d) W.L. Bragg

65. A fringe is a path of:

(a) Constant phase

(b) Constant amplitude

(c) Same wavelength

(d) None of these

The main advantage of a grating over young's apparatus is the:

(a) Absence of bright light

(b) Greater deviation of light

(c) Absence of dark fringes

(d) Sharpness of bright lines

Michelson interferometer is based on the principle of:

(a) Division of wavefronts

(b) Division of amplitude

(c) Addition of amplitude

(d) None of these

68. The blue of the sky is due to:

(a) Polarization

(b) Reflection

(c) Refraction

(d) Scattering

69. The velocity of light was accurately measured by:

(a) Newton

(b) Faraday

(c) Michelson

(d) Young

The wavelength of X-rays is:

(a) 1000 A°

(b) 10 A°

(c) 1 A°

(d) 100 A°

71. Interference and diffraction of light support the:

(a) Particle nature of light

- **(b)** Quantum nature of light
- (c) Transverse nature of light
- (d) Wave nature of light

72. Polarization of light shows that light is:

- (a) Extremely short wavelength
- **(b)** Transverse waves

(c) Longitudinal waves

(d) Corpuscular in nature

 2×10^{8}

(c)

 1.5×10^{8}

(d)

ANSWERS

1.	(c)	2.	(c)	3.	(b)	4.	(c)
5.	(b)	6.	(c)	7.	(d)	8.	(c)
9.	(d)	10.	(d)	11.	(a)	12.	(b)
13.	(a)	14.	(a)	15.	(c)	16.	(b)
17.	(a)	18.	(c)	19.	(b)	20.	(d)
21.	(d)	22.	(b)	23.	(b)	24.	(c)
25.	(a)	26.	(d)	27.	(c)	28.	(d)
29.	(c)	30.	(b)	31.	(d)	32.	(c)
33.	(b)	34.	(a)	35.	(d)	36.	(a)
37.	(b)	38.	(b)	39.	(c)	40.	(a)
41.	(c)	42.	(d)	43.	(b)	44.	(d)
45.	(c)	46.	(c)	47.	(c)	48.	(b)
49.	(b)	50.	(c)	51.	(a)	52.	(a)
53.	(a)	54.	(b)	55.	(c)	56.	(b)
57.	(a)	58.	(a)	59.	(c)	60.	(b)
61.	(b)	62.	(b)	63.	(a)	64.	(a)
65.	(a)	66.	(d)	67.	(b)	68.	(d)
69.	(c)	70.	(c)	71.	(d)	72.	(b)
73.	(a)	74.	(a)	75.	(c)	76.	(a)
77.	(d)	78.	(a)	79.	(c)	80.	(a)
81.	(b)	82.	(b)	83.	(c)	84.	(b)
85.	(d)	86.	(b)	87.	(d)	88.	(d)
89.	(c)	90.	(d)	91.	(c)	92.	(a)
93.	(c)	94.	(c)	95.	(c)	96.	(d)
97.	(d)	98.	(c)	99.	(b)	100.	(c)
101.	(d)	102.	(d)	103.	(b)	104.	(c)
105.	(b)	106.	(b)	107.	(d)	108.	(d)
109.	(a)	110.	(d)				