

ELECTROSTATICS

Each question has four possible answers, tick (11) the correct answer:

				-	-
1	Tha	Can	امسا	fana	
	- ine	COIII	omn	force	18

(a)
$$F = K \frac{q_1 q_2}{r^2}$$

(b)
$$F = K \frac{q_1 q_2}{r}$$

(c)
$$F = K \frac{q_1 q_2}{r^3}$$

(d)
$$F = K \frac{q_1 r^2}{q_2}$$

2. The value of K depends upon:

(a) Charges

(b) System of units and medium

(c) The distance between charges

(d) Nature of medium

3. The value of K in SI system of units:

(a) $9 \times 10^9 \text{ Nm}^2/\text{c}^2$

(b) $9 \times 10^{10} \text{ Nm}^2/\text{c}^2$

(c) $9 \times 10^{-9} \text{ Nm}^2/\text{c}^2$

(d) $9 \times 10^9 \text{ NC/m}^2$

4. The branch of physics which deals with the charges at rest:

(a) Current electricity

(b) Electromagnetism

(c) Electrostatics

(d) Nuclear physics

5. The value of permitivity of free space:

(a) $8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$

(b) $8.85 \times 10^{-12} \,\mathrm{C^2 m^2/N}$

(c) $8.85 \times 10^{-12} \text{ Nm}^2/\text{C}$

(d) $8.85 \times 10^{-11} \text{ Nm}^2/\text{C}^2$

6. When the medium is insulator the electrostatic force between the charges is:

(a) Decreased

(b) Zero

(c) Increased

(d) None of above

7. What is standard to measure the relative permitivity:

(a) Water

(b) Vacuum

(c) Air

(d) Atmosphere

8. Which of the following statement is correct:

(a) Similar charges attract each other

(b) Similar charges attract and repel each other

(c) Similar charges repel each other

(d) Similar charges neither attract nor repel

9. Metals are good conductors of electricity because they have:

(a) Large number of bounded electrons

(b) Small number of electrons

(c) Large number of free electrical

(d) Small number of free electrons

10. Free electrons are:

(b) Loosely bounded

(d) Tightly bound

11. The SI unit of charge is:

(b) Calorie

(d) Joule

12.9 The number of electrons in one coulomb charge is equal to:

(a)
$$6.2 \times 10^{18}$$
 electrons

(b) Zero electrons

(c)
$$1.6 \times 10^{-22}$$
 electrons

(d) 6.2×10^{21} electrons

13. The electrostatic force of repulsion between two electrons at 1 metre is:

(a)
$$9 \times 10^9 \text{ N}$$

(b)
$$1.44 \times 10^{-9} \text{ N}$$

(c)
$$2.30 \times 10^{-28} \text{ N}$$

14. A charge of 10μ C and $14.4\,\mu$ C are 12 cm apart, the force between them is:

(a)
$$9 \times 10^5 \text{ N}$$

(b)
$$9 \times 10^7 \,\text{N}$$

(d)
$$108 \times 10^7 \text{ N}$$

15. A substance contains:

(b) Only negative charge

(d) None of above

16. If the distance between the two charge bodies is halved, the force between them becomes:

(b) Four time

(d) Doubled

17. The SI units of permitivity are:

(a)
$$N.m/C^2$$

(b) $C^2/N.m^2$

(c)
$$N.m^2/C^2$$

(d) N.m/C

18. The minimum charge on any electron be less than:

(a)
$$1.6 \times 10^{-19}$$
C

(b)
$$3.2 \times 10^{-19}$$
C

(c)
$$1.8 \times 10^{-19}$$
C

(d)
$$9.1 \times 10^{-19}$$
C

19. The force in a medium of relative permittivity \in_{r} is given by:

(a)
$$F' = \frac{F}{\epsilon_r}$$

(b)
$$F' = \frac{\epsilon_r}{F}$$

(c)
$$F' = \in_r . F$$

(d)
$$F' = \frac{F}{\in O \in I}$$

20. When current of one ampere is flowing across any cross-section of wire in one second, then the quantity of charge is said to be:

(a) Ink

				_
	(c)	One micro-coulomb	(d)	None of above
21.		electric force between two charges plants 80, the force reduced to:	iced ii	n air is 2 Newton. When placed in a medium of
	(a)	0.029 N	(b)	0.025 N
	(c)	0.03 N	(d)	0.04 N
22.	The	value of \in r for various dielectrics is always	vays:	
	(a)	Larger than unity	(b)	Less than unity
	(c)	Equal to unity	(d)	None of above
23.	A m will	<u>-</u>	is cha	rged with 4×10^{-8} c. The potential on its surface
	(a)	90 volts	(b)	9 volts
	(c)	9000 volts	(d)	900 volts
24.	Orig	gin of the gravitational and electric force	es:	
	(a)	is still unknown	(b)	was known in 1611 A.D
	(c)	was known in 1712 A.D	(d)	was known in 1911 A.D
25.	Mic	hael Faraday was known by his work o	n:	
	(a)	Electric force	(b)	Weak nuclear force
	(c)	Strong nuclear force	(d)	Gravitational force
26.	The	SI unit of charge is:		
	(a)	Meter	(b)	Ampere
	(c)	Coulomb	(d)	Volt
27.	In c	ase of two identical charges placed at co	ertain	distance, the electric lines of force are:
	(a)	Curved	(b)	Straight lines
	(c)	Both (a) and (b)	(d)	None of these
28.	An o	example of photoconductor is:		
	(a)	Iron	(b)	Aluminum
	(c)	Carbon	(d)	Selenium
29.	Sele	enium is:		
	(a)	Conductor		
	(b)	Insulator in the dark are becomes con	ducto	when exposed to light
	(c)	An insulator		
	(d)	None of these		
30.	The	inkjet printer ejects a thin stream of:		

(b) Water

(a) Photocopier

ODUL		7 11 7 0 7 0 0 7 7 11 11 11		
	(c)	Oil	(d)	None of these
31.	An i	mportant part of inkjet printer is:		
	(a)	Deflection plates	(b)	Toner
	(c)	Drum	(d)	None of these
32.	An i	nkjet printer uses in its operation:		
	(a)	Positrons	(b)	Neutrons
	(c)	An electric charge	(d)	Photons
33. 9	The	photo copying process is called:		
	(a)	Xerography	(b)	Inkjet printer
	(c)	Both (a) and (b)	(d)	None of these
34. 9	An i	mportant port of a photocopier is:		
	(a)	Deflation plates	(b)	Toner
	(c)	Charging electrode	(d)	Printed head
35. 9	Xero	ography means:		
	(a)	Dry writing	(b)	Wet writing
	(c)	Both (a) and (b)	(d)	None of these
36.	The	number of electric field lines passing th	rough	a certain element of area is called:
	(a)	Electric lines of force	(b)	Electric intensity
	(c)	Electric flux	(d)	None of these
37.	The	concept of electric field theory was intr	oduce	d by:
	(a)	Kepler	(b)	Newton
	(c)	Dalton	(d)	Michael Faraday
38.	The	space around the charge within which o	ther c	harges are influenced by it is called:
	(a)	Electric field	(b)	Magnetic field
	(c)	Electric flux	(d)	Electric intensity
39.	The	force per unit charge is called:		
	(a)	Electric field	(b)	Electric field intensity
	(c)	Electric potential energy	(d)	Electric potential
40.	The	electric field exist around:		
	(a)	Charges	(b)	On the left side
	(c)	At the –ve charge	(d)	At the +ve charge
41.	The	practical application of electrostatic is:		

(b) X-rays machines

OBJE	CTIVE	PHYSICS PART-II		
	(c)	Laser	(d)	All of above
42.	The	electric field lines emerge from the cha	rges i	n:
	(a)	Three dimensions	(b)	Two dimensions
	(c)	One dimension	(d)	All of above
43.	The	direction of electric intensity is:		
	(a)	Normal to the field	(b)	Tangent to the field
	(c)	Parallel to the field	(d)	None of above
44.	Whe	en the field is strong, the lines of force a	re:	
	(a)	Closer	(b)	Parallel
	(c)	Farther	(d)	All of above
45.	The	electric lines of force determine the stre	ength	of an:
	(a)	Gravitational field	(b)	Constant field
	(c)	Magnetic field	(d)	Electric field
46.	The	electric intensity is a:		
	(a)	Scalar quantity	(b)	Vector quantity
	(c)	Physical quantity	(d)	None of above
47.	The	unit of electric intensity is:		
	(a)	C/m ²	(b)	N/C
	(c)	Volt – meter	(d)	Both (b) and (c)
48.	A cl	narge of 2 coulomb is in a field of intens	sity 2	N/C. The force on charge is:
	(a)	4 π N	(b)	4 N
	(c)	0 N	(d)	1 N
49.	The	electric intensity at a distance of 1m fro	m the	e point charge is 1μC is:
	(a)	$9 \times 10^9 \text{ N/C}$	(b)	$9 \times 10^6 \text{ N/C}$
	(c)	$9 \times 10^3 \text{ N/C}$	(d)	9 N/C
50.	The	total number of lines of force passing ou	it of a	ny closed surface is equal to:
	(a)	$4\pi \in {}_0$	(b)	$\frac{1}{4\pi \epsilon_0}$
	(c)	$\frac{1}{\epsilon_0} \times Q$	(d)	$\frac{1}{\in {}_{0}O}$
51.	Ano	ther term used to mean electric lines of	force	is:
	(a)	Electric field	(b)	Permitivity
		Electric flux		Fauinotentials

(a) $\phi = \overrightarrow{E} \cdot \overrightarrow{A}$

52.

The electric flux is given by the expression:

(b) $q = \overrightarrow{E} \cdot \overrightarrow{A}$

(c)
$$\phi = \overrightarrow{E} \cdot \overrightarrow{Q}$$

(d)
$$V = \overrightarrow{E} \cdot \overrightarrow{d}$$

53. Electric flux is a:

(a) Vector quantity

(b) Scalar quantity

(c) Both (a) and (b)

(d) None of above

54.9 The SI unit of electric flux is:

(a) Nm^2/C^2

(b) Nm/C^2

(c) Nm^2/C

(d) Nm/C

55. The formula $\phi = \overrightarrow{E} \cdot \overrightarrow{A}$ is applied when the area is:

(a) Flat

(b) Curve

(c) Rounded

(d) Spherical

56. The electric lines of force are directed away from:

(a) Positive charge

(b) Negative charge

(c) Both +ve and -ve

(d) None of above

57. The magnitude of electric intensity due to a point charge q at a distance r in free space is given by:

 $(a) \quad E = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2}$

(b) $E = 4\pi \in {}_{o} \frac{q}{r^2}$

(c) $E = \frac{1}{4\pi \epsilon_0} \frac{q^2}{r^2}$

(d) $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$

58. The electric intensity at infinite distance from the point charge is:

(a) Infinite

(b) Zero

(c) Positive

(d) Negative

59. The number of electric lines of force passing through certain area is known as:

(a) Electric intensity

(b) Electric field

(c) Electric flux

(d) All of above

60. The electric flux through any surface depends upon:

(a) Area of surface

(b) Direction of surface

(c) Electric intensity

(d) All of above

61. In $\phi_c = EA \cos \theta$, the angle θ is the angle between the field lines and:

(a) Vector Area

(b) Electric intensity

(c) Potential

(d) None of these

62. The surface charge density is defined as:

(a) Charge per unit volume

(b) Charge per unit mass

(c) Mass per unit area

- (d) Charge per unit area
- 63. If σ is the surface charge density and A is the area of Gaussian surface then charge enclosed by it is:
 - (a) $\frac{A}{\sigma}$

(b) $\frac{\sigma}{A}$

(c) σA

- (**d**) σ-A
- **64.** If $\overrightarrow{E} = \frac{\sigma}{2 \in \rho} \hat{r}$, the unit vector \hat{r} is:
 - (a) Shows the direction of electric intensity (b) Directed from negative to positive plate
 - (c) Directed towards the positive plate
- (d) None of these
- **65.** The electric intensity due to two oppositely charged plates is:
 - (a) $\overrightarrow{E} = \frac{\sigma}{\epsilon_0} \hat{r}$

(b) $\stackrel{\longrightarrow}{E} = \frac{\varepsilon_0}{\sigma} \stackrel{\wedge}{r}$

(c) $\overrightarrow{E} = \sigma \sigma_0 \hat{r}$

- (d) None of these
- **66.** The interior of a hollow charged metal sphere is a region which is:
 - (a) Full of electric field lines
- **(b)** Field free region

(c) Both (a) and (b)

- (d) None of these
- **67.** Gauss's Law can only be applied to:
 - (a) Surface of any shape

(b) Plane surface

(c) Closed surface

- (d) A curved surface
- **68.** According to Gauss's law, the flux through the closed surface is:
 - (a) $\frac{Q}{\in 0}$

(b) $\frac{E}{\in A}$

(c) $\frac{E}{\in 0}$

- (d) $\frac{A}{\in \Omega}$
- **69.** Intensity of field inside a Hallow charged sphere is:
 - (a) Minimum

(b) Maximum

(c) Zero

- (d) All of above
- **70.** The electric intensity due to infinite sheet of charge is:
 - (a) $E = \frac{\sigma}{2 \in \Omega}$

(b) $E = \frac{\sigma}{\epsilon_0}$

(c) $E = \frac{\sigma}{2\epsilon_0 \epsilon_0}$

- (d) $E = \frac{2\sigma}{\epsilon}$
- 71. Which one of the following is taken as the measure of electric intensity?

(a)	E =	$\frac{\Phi}{\Delta}$
` /		A

(b)
$$E = \frac{\phi \in 0}{A}$$

(c)
$$E = \frac{q}{\epsilon_0 A}$$

(d)
$$E = \frac{F}{A}$$

72. Work done in moving a charge (unit positive charge) from one point to another against the electric field is measure of:

(a) Electric potential

(b) Potential difference

(c) Electric intensity

(d) Absolute potential

73. The SI unit of potential difference is:

(a) Volt

(b) Ampere

(c) Joule

(d) $\frac{\text{Volt}}{\text{Metre}}$

74. Another name for electric potential energy per unit charge is:

(a) Electric intensity

(b) Electric potential

(c) Electric force

(d) Electric flux

75. Work done in bringing a unit positive charge from infinity to that point in an electric field is:

(a) Resistance

- (b) Capacitance
- (c) Absolute potential difference
- (d) Electric potential

76. If an electron of charge "e" is accelerated a potential difference V it will acquire energy:

(a) Ve

(b) $\frac{v}{e}$

(c) $\frac{e}{v}$

(d) Ve²

77. Electric potential is:

(a) Vector quantity

(b) Neither scalar non vector

(c) Scalar quantity

(d) None of above

78. Another unit of electric intensity can be expressed as:

(a) $\frac{\text{Volt}}{\text{Meter}}$

(b) $\frac{\text{Ampere}}{\text{Meter}}$

(c) $\frac{\text{Meter}}{\text{Volt}}$

(d) $\frac{\text{Volt}}{\text{Coulomb}}$

79. In a region where the electric field is zero the electric potential is always:

(a) Negative

(b) Positive

(c) Zero

(d) Constant

80. An electron volt is the unit of a:

(a) Potential

(b) Electric potential energy

(c) Charge

- (d) Power
- **81.** The negative of the potential gradiant is:
 - (a) Electric intensity

(b) Potential energy

(c) Voltage

- (d) Electrostatic force
- **82.** The change of potential w.r.t displacement is called:
 - (a) Electric potential

(b) Electric intensity

(c) Potential gradient

- (d) None of these
- **83.** Coulomb multiplied by volt gives the unit called:
 - (a) Ohm

(b) Bolt

(c) Ampere

- (d) Joule
- **84.** The variation of electric potential due to a point charge with distance is represented by the graph:

(b)

(c)

(d)

- **85.** Which of the following forces are conservative:
 - (a) Electric force

(b) Gravitational force

(c) Frictional force

- (d) Both (a) and (b)
- **86.** Which of the following forces is only repulsive:
 - (a) Electrostatic force

(b) Gravitational force

(c) Storing nuclear force

(d) None of these

- 87. The unit of F_e/F_g is:
 - (a) No unit

(b) Coulomb

(c) Newton

- (d) None of these
- **88.** The Millikan's experiment apparatus also contains:
 - (a) An atomizer

(b) Lens

(c) Microscope

- (d) All of above
- **89.** If a oil droplet between two oppositely charged parallel plates is suspended then:
 - (a) $F_g > F_c$

(b) $F_g \le F_e$

PROBLEM 12.5

Two point charges, $q_1 = -1.0 \times 10^{-6}$ C and $q_2 = +4.0 \times 10^{-6}$ C, are separated by a distance of 3.0 m. Find and justify the zero-field location.

Data

Charge =
$$q_1$$
 = -1.0×10^{-6} C

Charge =
$$q_2$$
 = $+4.0 \times 10^{-6}$ C

Distance between the charges = r = 3.0 m

To Find

Distance where the electric intensity is zero = x = ?

SOLUTION

Let P be the any point at a distance x from the charge q_1 . So the electric intensity E_1 due to the charge q_1 is

$$E_1 = \frac{1}{4\pi \epsilon_o} \frac{q_1}{x^2}$$

$$E_1 = 9 \times 10^9 \times \frac{1.0 \times 10^{-6}}{x^2}$$

And the electric intensity due to the charge q_2 is

$$E_2 = \frac{1}{4\pi \epsilon_0} \frac{q_2}{(3+x)^2}$$

$$E_2 = 9 \times 10^9 \times \frac{4.0 \times 10^{-6}}{(3 + x)^2}$$

Since at point P, the two electric intensities are equal and opposite in direction therefore

$$\begin{array}{rcl} E_1 & = & E_2 \\ \frac{1}{4\pi \in _o} \; \frac{1.0 \times 10^{-6}}{x^2} & = \; \frac{1}{4\pi \in _o} \; \frac{4.0 \times 10^{-6}}{(3+x)^2} \\ & \frac{1}{x^2} & = \; \frac{4}{(3+x)^2} \end{array}$$

Taking square root

$$\sqrt{\frac{1}{x^2}} = \sqrt{\frac{4}{(3+x)^2}}$$

$$\frac{1}{x} = \frac{2}{3+x}$$

$$2x = 3+x$$

$$2x - x = 3$$

$$x = 3m$$

Result

Distance where electric intensity is zero = x = 3.0m.

(c) $C = \frac{V}{O}$

Negatively charged (a) Positively charged (b) Neutral on the average (d) None of these (c) 100. The voltage across the capacitor at any instant can be obtained by: Dividing q by C (a) **(b)** Dividing C by q Multiply q by C None of these (c) (d) 101. The unit of time constant is the product of: Coulomb and joule Farad and ohm (a) (b) Coulomb and watt Farad and watt (d) (c) 102. A radio tunning capacitor is a: Cylindrical capacitor (b) Spherical capacitor (d) None of these Parallel plate capacitor (c) 103. The potential at a point situated at a distance of 50 cm from a charge of 5µc is: (a) 9×10^4 volts **(b)** $9 \times 10^2 \text{ volts}$ (c) 9×10^{-2} volts 9×10^{-4} volts (d) 104. The earth's potential is considered as: Positive Negative (a) (b) Infinite Zero (d) (c) 105. The interior of a hollow charged sphere is a: Field free region Strong field region (b) (a) None of above Week field region (c) (d) 106. One electron volt is: $1.6 \times 10^{-19} \text{J}$ **(b)** $1.6 \times 10^{-18} \text{J}$ (a) $1.6 \times 10^{-20} \text{J}$ (d) $1.6 \times 10^{-15} \text{J}$ A charge of 0.10 C accelerated through a potential difference of 1000 volt acquires K.E. 107. (a) 100 J 200 J **(b)** 100 eV 400 J (c) (d) The absolute potential at a point distant 20 cm from a charge of 2 µc is: 108. $9 \times 10^2 \text{ V}$ $9 \times 10^3 V$ (a) (b) $9 \times 10^4 \text{ V}$ (c) 90 V (d) Capacitor is a device used for: 109. Storing charge Storing direct current (b) Storing alternating current (d) Storing voltage The capacitance of a capacitor is given by the relation: 110. **(b)** $C = \frac{QV}{2}$ (a) $C = \frac{Q}{V}$

(d) $C = \frac{1}{2} QV^2$

111.9 Farad is the unit of:

- Capacitance (a)

(b) Conductance

(c) Current

Electric flux (d)

112. The value of capacitance depends upon:

Charge on the plates

- (b) Thickness of the plates
- Geometry of the capacitor
- All of above (d)

The capacitance of a parallel plate capacitor is given by: 113.

(a) $C = \frac{A}{\epsilon_0 d}$

(b) $C = \frac{A \in 0}{d}$

(c) $C = \frac{\epsilon_0 d}{\Delta}$

(d) $C = \in {}_{0}Ad$

Which one of the following is correct: 114.

(a) $1\mu F = 10^{-6} F$

(b) $1PF = 10^{-12}F$

(c) $1 \text{ PF} = \mu \mu F$

(d) All of above

115. Energy density of a capacitor is equal to:

 $(a) \quad \frac{1}{2} \in {}_0 \in {}_r E^2$

(b) $E \in {}_{0} \in {}_{r}$

(c) $\frac{\in 0}{F}$

None of above (d)

116. A capacitor's capacitance can be increased by:

Increasing the area

Decreasing the distance (b)

Placing the dielectric (c)

All of above (d)

Faraday is a scientist: 117.

> (a) English

(b) French

(c) American (d) Spanish

Capacitance and potential difference are: 118.

> Directly proportional (a)

Equal (b)

Constant (c)

Inversely proportional (d)

119. If we increase the charge, the capacitance:

> (a) Decrease

Constant (b)

Increase

(d) None of these

120. When dielectric is placed between the plates it decrease the:

> Electric intensity (a)

Electric force (b)

Surface charge density

(d) Potential difference

121. The charges on the parallel plates of capacitor possess:

> K.E (a)

- Chemical energy (b)
- Electric potential energy
- (d) None of above
- 122. When capacitor arises, the potential from $0 \to V$ its average potential difference is:

	V
(a)	$\frac{1}{2}$

(b) -V

(c) V

(d) Zero

- **123.** Energy stored in capacitor is:
 - (a) $\frac{1}{2}$ CV²

(b) $\frac{1}{4} \text{ CV}^2$

(c) $\frac{1}{2} C^2 V$

- **(d)** $\frac{1}{2}$ CV⁴
- **124.** The circuit having combined components resistance and capacitor is called:
 - (a) R-L circuit

(b) R-C circuit

(c) R-L.C circuit

- (d) R.I circuit
- **125.** The charging time of the capacitor depends open:
 - (a) R × C

(b) $\frac{R}{C}$

(c) R × L

- (d) $\frac{RL}{C}$
- **126.** When dielectric material is placed in an electric field it:
 - (a) Conducts

(b) Exhibit electric charge

(c) Undergoes electrolysis

- (d) Becomes polarized
- **127.** The energy supplied in charging a capacitor resides after the charging in:
 - (a) The battery

(b) The electric field

(c) The magnetic field

- (d) None of these
- **128.** A system of two equal and opposite charges separated by a small distance is called:
 - (a) A dipole

(b) Inductance

(c) A capacitor

- (d) A condenser
- 129. An electric field that will balance a weight of an electron should act:
 - (a) In the downward

- **(b)** In the upward
- (c) Along surface of sphere
- (d) None of these
- - (a) Potential energy

(b) K.E

(c) Mechanical energy

- (d) Electric potential energy
- 131.9 Charge on electron was determined by:
 - (a) Ampere

(b) Maxwell

(c) Milikan

- (d) Bohr
- 132. In the xerographic machine, the heart of the machine drum is made of:
 - (a) Ceramic

(b) Semi-conductor

(c) Strong plastic

- (d) Aluminum
- **133.** Electric field intensity at a point is defined the equation:
 - (a) $E = \frac{q}{F}$

(b) $E = \frac{F}{a}$

(c)	Е	=	qF

(d)
$$E = \frac{q^2}{F}$$

134. If a dielectric is placed between the plates of a capacitor, its capacitance will:

7 .	T
(a)	Increase
	THE CHOC

(b) Decrease

(c) Becomes double

(d) None of these

135. The number of electrons in one coulomb charge:

(b) 1.6×10^{-19}

(c)
$$6.2 \times 10^{-19}$$

(d) 6.2×10^{18}

136. If the distance between two charges is doubled, the force between them:

(b) One fourth

(c) Half

(d) Remain same

137. An electric field cannot deflect:

(a) X-rays

(b) α-particles

(c) β-particles

(d) None of these

138. When a dielectric is placed in an electric field, it is:

(a) Change

(b) Polarized

(c) Remain unchanged

(d) None of these

139. \in o is permittivity of free space it can be given as:

(a)
$$\epsilon_0 = \frac{1}{\epsilon_r}$$

(b)
$$\in$$
 $_{0} = \frac{1}{K}$

$$(\mathbf{c}) \quad \in {}_{0} = \frac{1}{4\pi K}$$

(d) None of these

140. A force of 0.01 N is exerted on a charge 1.2×10^{-5} C at a certain point. The electric field at that point is:

(a)
$$1.2 \times 10^4 \text{ N/C}$$

(b)
$$1.2 \times 10^4 \,\text{C/N}$$

(c)
$$8.3 \times 10^2 \text{ N/C}$$

(d)
$$8.3 \times 10^{-2} \text{ N/C}$$

141. A charge $-4~\mu C$ is at origin and $+16~\mu C$ is at a distance 3 m on positive x-axis. The zero field is located at:

(a) 3 m along y-axis

(b) 3 m along negative x-axis

(c) 3 m along positive x-axis

(d) None of these

142. Electric intensity between two same charged parallel plates is:

(a)
$$\frac{\sigma}{\epsilon_0}$$

(b)
$$\frac{2c}{\epsilon}$$

(c) Zero

(d) None of these

143. Capacitance of a capacitor is increases by decreasing:

(a) Area of plates

- (b) Medium
- (c) Distance between plates
- (d) None of these

144. Two metallic sphere of radius 2 cm and 4 cm get equal quantity of charge. Which has greater surface charge density?

OBJECTIVE	PHYSICS PART-
(9)	2 nd sphere

Flux

(c)

Both (a), (b)

	(a)	2 sphere	(n
	(c)	First sphere	(d
145.	The	apparatus used by coulomb is:	
	(a)	Cavendish	(b
	(c)	Physical balance	(d
146.	The	number of lines per unit area passis	ng perpe

Both have same None of these Torsion balance Gold leaf electroscope endicular through an area is called: Electric intensity None of these

	ANSWERS								
1.	(a)	2.	(b)	3.	(a)	4.	(c)	5.	(a)
6.	(a)	7.	(b)	8.	(c)	9.	(c)	10.	(b)
11.	(a)	12.	(a)	13.	(c)	14.	(c)	15.	(c)
16.	(c)	17.	(b)	18.	(a)	19.	(a)	20.	(a)
21.	(b)	22.	(a)	23.	(c)	24.	(a)	25.	(a)
26.	(c)	27.	(a)	28.	(d)	29.	(b)	30.	(a)
31.	(a)	32.	(c)	33.	(a)	34.	(b)	35.	(a)
36.	(c)	37.	(d)	38.	(a)	39.	(b)	40.	(a)
41.	(a)	42.	(d)	43.	(b)	44.	(a)	45.	(d)
46.	(b)	47.	(b)	48.	(b)	49.	(c)	50.	(c)
51.	(a)	52.	(a)	53.	(b)	54.	(c)	55.	(a)
56.	(a)	57.	(a)	58.	(b)	59.	(c)	60.	(a)
61.	(a)	62.	(d)	63.	(c)	64.	(a)	65.	(a)
66.	(b)	67.	(a)	68.	(a)	69.	(c)	70.	(a)
71.	(a)	72.	(a)	73.	(a)	74.	(b)	75.	(c)
76.	(a)	77.	(c)	78.	(a)	79.	(c)	80.	(b)
81.	(a)	82.	(c)	83.	(d)	84.	(b)	85.	(d)
86.	(d)	87.	(a)	88.	(d)	89.	(c)	90.	(a)
91.	(b)	92.	(d)	93.	(b)	94.	(c)	95.	(b)
96.	(d)	97.	(a)	98.	(d)	99.	(c)	100.	(a)
101.	(a)	102.	(c)	103.	(a)	104.	(c)	105.	(b)
106.	(a)	107.	(a)	108.	(c)	109.	(a)	110.	(a)
111.	(a)	112.	(d)	113.	(b)	114.	(d)	115.	(a)
116.	(d)	117.	(b)	118.	(d)	119.	(c)	120.	(a)
121.	(c)	122.	(a)	123.	(a)	124.	(b)	125.	(a)
126.	(d)	127.	(b)	128.	(a)	129.	(a)	130.	(b)
131.	(c)	132.	(d)	133.	(b)	134.	(a)	135.	(d)
136.	(b)	137.	(a)	138.	(b)	139.	(c)	140.	(c)
141.	(b)	142.	(c)	143.	(c)	144.	(c)	145.	(b)
146.	(b)								