COMPUTER SCIENCE

10

O
O
&Q’+
L
ActlonS s\t
" PHP 2”\.1#

Y \ ‘_"Jll%
= / =""'\5'-'I:‘III’ffﬁﬁﬁfﬁf..ﬁﬁ.ﬁ%‘i"i _
e N % ~.
I e

......... SRR

&Y 0o oo

PUNJAB CURRICULUM AND
TEXTBOOK BOARD, LAHORE

All rights reserved with the Punjab Curriculum and Textbook Board, Lahore.

No part of this book can be copied, translated, reproduced or used for preparation of

test papers, guide books, key notes, helping books, etc.

Contents
Unit Topic Page
1 Introduction to Programming 1
2 User Interaction 1
3 Conditional Logic Oé%
; Data and Repetition _\Sg’ 77
5 Functions) 101
Glossary 118
Index 121
Answers 122
AUTHOR EDITOR

Dr. Muhammad Adnan Hashmi
Assistant Professor;
Department of Computerg ience and IT

The University

re

Arti
Ms. Ai éaheed

o

signer

Mr. Uzair Ahmad

BSCS (continued), COMSATS University
Islamabad (Lahore Campus)

Layout Setting

Mr. Aleem Ur Rehman

Dr. Mudasser Naseer
Associate Professor
Department of Computer Science and IT
The University of Lahore

Supervision

Ms. Nisar Qamar
Director Manuscripts
Mr. Mazar Hayat
HOD(Pure Sciences)
Mr. Jahanzaib Khan
S.S Computer Science
PCTB, Lahore

Table of Contents
1

o 1.1 Programming Environment
¢ 1.1.1 Integrated Development Environment (IDE)........ccoccoveneinineineenece. 3
0 1.1.2 TEXE EAITON oot 4
0 1.1.3 COMPIIET ..ottt 5

o 1.2 Programming Basics
0 1.2.71 RESEIVEA WOTAS......ooeiiceieiieeieeieisesisesisesise e sisesisessssesssesasesssesinens 6
e 1.2.2 Structure of @ C Program..........c.ceeeeenreeeeneineensiesenssnssseseessssssssssssens

e 1.2.3 Purpose and Syntax of comments in C Programs
o 1.3 Constants and Variables

2: User Interaction

o 2.1 Input/ Output (I/0) Function§™)

0 2,17 PHNEE() el Nttt 23

¢ 2.1.2 Format Specifiet’s\o. ... 24
213 SCANO. sl 26

0 214 GECh (e A e 28

0 2.1.5 Statement Terminator........ocre e 29

¢ 2.1.6 Es¢ EUUENCE. ..ottt ssens 29
o 2.2 Operatois

0 2.2.1 ASSIGNMENt OPEIALOrS.....eocevvvveeeeeeeeeeevseessseseeee s 31

0 2.2.2 ArithmetiC OPErators........coveieerieeireieieeie e ssessessessaees 32

© 2.2.3 Relational OpPerators........cieeneiesineeesissessissessessesssesesssassssssans 37

» 2.2.4 Assignment Operator (=) and equal to Operator (==)............... 38

0 2.2.5 LOGICal OPErators.......oveueeeeeeeeeeeeeeieeeseseesse e sesesse e ssesesseees 39

e 2.2.6 Unary vs Binary Operators........eeneineensensineiseisessesssesssssenens 41

0 2.2.7 Operators’ PreCEAENCE. ...t ssssss s ssnes 42

52
o 3.1 Control Statements

o 3.2 Selection Statements

e
Table of Contents

© 32,1 If StAtEMENT. ...ttt 53
0 3.2.2 If-€lSe StatemMENt. ...t 59
© 3.2.3 Nested If-else StrUCTUIeS.........o.ovvrrerrerreerere oo 64
* 3.2.4 Solved Example Problems............inrineinseessiesssiesisenens 67
77
o 4.1 Data Structures
8 A TT ATTAY ottt 78
0 4.1.2 Array DeClaration......c.cierieinrieeneiesisiesississ st ssessssssens 79
e 4.1.3 Array Initialization........ccoveereeneneeeeeeeeene 617 79
¢ 4.1.4 Accessing array elements.........cccoeoevereerrernrirernnnnnns Q 80
«4.1.5 Using variables as array indexes........................ O 82
© 4.2 Loop Structures Q) -
« 4.2.1 General structure of loops........cccconvuun... ’\ ... 83
« 4.2.2 General syntax of for loop.......... R - OO 83
©4.2.3 NESTEA LOOPS. ..o gmmtee Bgereeseesesesssesssesssssssssssssssssssssssssssnns 87
... 91
©4.2.5 LOOPS @NA AITAYS....crretisrereerreieeireieeiseieeesesssesss s esse s sesssssaees 93
*4.2.6 Solved Example Probleiis ™. ... sessenens 95
101
0 5.1 Functions N\ 102
*5.1.1 Types of Funcﬂ\ SO vs v — 102
©5.1.2 AdVantag@sGf FUNCHONS ..o 103
® 5.1.3 Structure Of @ FUNCHION.....c.ociiiiririscsereeeeeieeee e 103
* 5.1.4 Defiping @ FUNCHION........oocvircrceicricceieeiieceeee e seeseseaane 104
6: Glossary 118
7: Indexes 121

122

INTRODUCTION TO PROGRAMMING

Students Learning Outcomes

After completing this unit students will be able to
B Describe the concept of Integrated Development Environments (IDE)
B Explain the following modules of the C programming environment

o TextEditor
oF

o Compiler

B |dentify the reserved words O
B Describe the structure of a C program covering \\,0
o Include ®+
o main () function &

o Bodyofmain{} @

Explain the purpose of comments and their
Explain the difference between a consta d,avariable

Explain the rules for specifying variable ndmes
Know the following data types off y C and the number of bytes taken by each data

type
o Integer—int(signed/urlsi@
N\

o Floating point—float
o Character—char
| Explaintheproc@@gclaringandinitializingvariables

ComputerScience -X Unit1:IntroductiontoProgramming

Unit Introduction
Computers have become an important part of our daily lives. They can help us to
solve several problems ranging from complex mathematical problems and
searching on the internet to controlling and operating satellites and rocket
launchers. In reality, computers are not very smart on their own. In order to
perform all the tasks, they have to be fed a series of instructions by humans which
tell them how to behave and perform when faced with a particular type of
problem. These series of instructions are known as a computg&program or
software, and the process of feeding or storing these i ctions in the
computer is known as computer programming. The pers@/vho knows how to
write a computer program correctly is known as a pr. mer.

Computers cannot understand English, Urdu $other common language
that humans use for interacting with each &@

languages, designed by computer ch@s. Programmers write computer

They have their own special

programs in these special Ianguagege d programming languages. Java, C,
C++, C#, Python are some of the mo@:ommonly used programming languages.
In this book, we are using C la e to write computer programs. This chapter

discusses some basics of ci®|ter programming using Clanguage.

DID YOU KNOW?
C languag @developed by Dennis Ritchie between 1969 and 1973 at

Bell Lab{

1.1 Programming Environment

In order to correctly perform any task, we need to have proper tools. For example

for gardening we need gardening tools and for painting we need a collection of
paints, brushes and canvas. Similarly we need proper tools for programming.

A collection of all the necessary tools for programming makes up a
programming environment. It is essential to setup a programming environment
before we start writing programs. It works as a basic platform for us to write and

execute programs.

ComputerScience -X Unit1:IntroductiontoProgramming

1.1.1 Integrated Development Environment (IDE)

A software that provides a programming environment to facilitate programmers
in writing and executing computer programs is known as an Integrated
Development Environment (IDE).

An IDE has a graphical user interface (GUI), meaning that a user can interact with
it using windows and buttons to provide input and get output. An IDE consists of

tools that help a programmer throughout the phases of writing, executing and

testing a computer program. This is achieved by combini ext editors,
compilers and debuggers in a single interface. Some of the y available IDEs
for C programming language are: .\:\

1) Visual Studio &Q)

2) Xcode &@

3) Code::Blocks Q

4) DevC++ S\Q

Figure 1.1 shows the main screen ofiCode::Blocks IDE.

Figure 1.1: Main interface of Code::Blocks

Use your web browser to find out the names of three different IDEs that
can be used for C programming language.

ComputerScience -X Unit1:IntroductiontoProgramming

1.1.2 Text Editor
An text editor is a software that allows programmers to write and edit computer
programs. All IDEs have their own specific text editors. It is the main screen of an

IDE where we can write our programs.

-] i e RGN R E) . il 1] s |-
T] -

i
HelloWorld.c = 7
‘1 #include <stdio.h>

| Py Sata
i1 workspace

void itxbii ||
wl

printf (“Hello world”); %
| O:

Fawadiasihe

E

Figure 1.2:<Q(¥ditor in Code::Blocks

Figure 1.2 shows a basic C [age program written in the text editor of IDE
Code::Blocks. When exe od?this program displays Hello World! on computer

screen. We have to our file before it can be executed. We have named our
program fileas” World.c”- We can click on the build and run button to see the
program's t, as pointed by an arrow in Figure 1.3.
I;I_..|'_. 1 E,Llll "‘&"""""":"‘""l 1
IH‘* h ! = | I - - B -
L"-EE.1_ D ‘_EL _Houov!;r_id.ci____ B
i} workspace :
3
= voidmin!!
L] |
: | printf (“Hello world”);
'3
%)
w

Figure 1.3: Running program in Code::Blocks

ComputerScience -X Unit1:IntroductiontoProgramming

A console screen showing the output is displayed, as shown in Figure 1.4.

' “C:\Users\TestUser\Documents\CodeBlocks Programs\HelloWorld.exe”

Process returned 0 (0x0) execution time: 0.032 s
Press any key to continue.

Figure 1.4: Program Output

Open the IDE installed on your lab computer. Write the prog(iLn written in
Figure 1.2 in the text editor of your IDE and execute it. ,\O
[

N
1.1.3 Compiler \@puterProgramFile

Computers only understand and work in macbﬁ@
language consisting of Os and 1s. They ra&the
conversion of a program written in pg ming

xecute it.

language to machine language, in ord

This is achieved using a compiler&compiler is a Computer Binary File
software that is responsible onversion of a

computer program writte@n some high level

Program
Execution

programming language Q%achine language code
(Figure 1.5). @

Figure 1.5: Program Execution

1.2 Progra ng Basics

Each programming language has some primitive building blocks and provides
some rules in order to write an accurate program. This set of rules is known as
syntax of the language. Syntax can be thought of as grammar of a programming
language. While programming, if proper syntax or rules of the programming
language are not followed, the program does not get compiled. In this case, the

compiler generates an error. This kind of errors are called syntax errors.

ComputerScience -X Unit1:IntroductiontoProgramming

1.2.1 Reserved Words

Every programming language has a list of words that are predefined. Each word
has its specific meaning already known to the compiler. These words are known
as reserved words or keywords. If a programmer gives them a definition of his
own, it causes a syntax error. Table 1.1 shows the list of reserved words in C

programming language.

auto double int struct

break else long switc@*

case enum register Qef

char extern return ""ﬂnion
S

const float short unsigned

continue for sigﬂgi ,: void
default goto @Mf volatile
g\ N

do if Q) static while
Table 1.1: R@'ved words in C language

Nt
From the following i@mircle the reserved words in C language:
int, pack, crea ase, return, small, math, struct, program, library.

ray_ N

>\)
1.2.2 Stru$@bfa C Program
We can understand the structure of a C language program, by observing the

program written in Figure 1.2. We can see that a program can be divided into

three main parts:

1. Link section or header section: While writing programs in C language, we
make extensive use of functions that are already defined in the language. But
before using the existing functions, we need to include the files where these
functions have been defined. These files are called header files. We include
these header files in our program by writing the include statements at the top

of program.

ComputerScience -X

Unit1:IntroductiontoProgramming

General structure of an include statement s as follows:
#include<header_file_name>

Here header_file_name can be the name of any header file.

In the above example (Figure 1.2), we have included file stdio.h that contains

information related to input and output functions. Many other header files

are also available, for example file math.h contains all predefined

mathematics functions.

2. Main section: It consists of amain() function. Every C progra@b&st containa

main() function and itis the starting point of execution. _ ()

. Body of main() function: The body of main() is enclg@n the curly braces {
}. All the statements inside these curly bra (ake the body of main

function. In the above program (re 1.2), the statement

printf(“Hello world!”); uses a predefined function printf to display the

statement Hello World! on comp creen. We can also create other

functionsin our program and use%ﬂ@m inside the body of main() function.
Important Note: Q

Following points must % ept in mind in order to write syntactically

correctC Ianguagx ms.
e The sequ of statements in a C language program should be

accow the sequence in which we want our program to be
executed.

e Clanguage s case sensitive. It means that if a keyword is defined with
all small case letters, we cannot capitalize any letter i.e. int is different

from Int. Former is a keyword, whereas latter is not.

e Eachstatement ends with a semi-colon; symbol.

ComputerScience -X Unit1:IntroductiontoProgramming

S8 ACTIVITY 1.4 \

Identify different parts of the following C program:
#include <stdio.h>

#include <conio.h>

void main()

{
printf(“I am a student of class 10”);

getch();
) N
AN ,-\0

1.2.3 Purpose and Syntax of Commentsin CPr ms

Comments are the statements in a program that arg'ﬁ d by the compiler and
n

do not get executed. Usually comments are w natural language e.g. in
English language, in order to provide descr@g our code.

Purpose of writing comments

Comments can be thought of as doc&ntatlon of the program. Their purpose is

twofold. Q

1) They facilitate other pr@gnmers to understand our code.

2) They helpustou c@tand our own code even after years of writing it.
We do not want éﬁatements to be executed, because it may cause syntax
erroras thes\t§@t§ts arewritten in natural language.
n

Syntax of writing comments

In C programming language, there are two types of comments.
1- Single-line Comments
2- Multi-line Comments
Single-line comments start with //. Anything after // on the same line, is
considered acomment. Forexample, //This is a comment.
Multi-line comments start with /* and end at */. Anything between /* and */ is

considered acomment, even on multiple lines. For example,

ComputerScience -X

Unit1:IntroductiontoProgramming

/*this 1is
amulti-Line
comment*/

Following example code demonstrates the usage of comments:

</> EXAMPLE CODE 1.1

#include <stdio. h>

output screen*/

void main()

} //body of main function ends her‘e

/*this program displays “I am a student of class 16” on the

{ //body of main function starts from here
printf(“I am a student of class 1)

N
OO
_\’5,

f"\v

W

Tick valid comments among the foIIOW|

<2

e *commentgoes here*

e /commentgoes here

e %commentgoes h

/* comment goe@&
here*/

/*commg goes here/
//co@ goes here */

AN

(S

g

1.3 Constants and Variables

Each language has a basic set of alphabets (character set) that are combined in

an allowable manner to form words, and then these words can be used to form

sentences. Similarly in C programming language we have a character set that

includes:
1) Alphabets (A, B,
2) Digits (0-9)
3) Special symbols (~ 1@ #% " &* () _- +

Y, Z),(ab..y 2)

=\{}1:"" <>,.2/)

ComputerScience -X Unit1:IntroductiontoProgramming

These alphabets, digits and special symbols when combined in an allowable
manner, form constants, variables and keywords (also known as reserved words).
We have already discussed the concept of reserved words. In the following, we
discuss the concept of constants and variables.

1.3.1 Constants

Constants are the values that cannot be changed by a program e.g. 5, 75.7, 1500
etc. In Clanguage, primarily we have three types of constants:

1- Integer Constants: These are the values without a d | point e.g. 7,
1256, 30100, 55555, -54, -2349 etc. They can be po@ or negative. If the
value is not preceded by a sign, itis considere a@.&itive.

2- Real Constants: These are the values in%ing a decimal point e.g. 3.14,
15.3333, 75.0, -1575.76, —7941.234&')63(. hey can also be positive or

negative. Q

3- Character Constants: Any si@& small case letter, upper case letter, digit,

punctuation mark, specia(&ymbol enclosed within ' ' is considered a

character constant e.% lal, X et

O IMPORTANT TIP % N

A digit used a!@:haracter constanti.e.'9', is different from a digit used as
an integ@ﬁktant i.,e. 9. We can add two integer constants to get the
obvious'mathematical resulte.g. 9 + 8 = 17, but we cannot add a character

constant to another character constant to get the obvious mathematical
kresult eg.'9'+'8 #17.

Identify the type of constant for each of the following values:

12 12 21 32.768
a’ -12.3 41 40.0 "\

Unit1:IntroductiontoProgramming

ComputerScience -X

1.3.2 Variables

Avariable is actually a name given to a memory location, as the data is physically
stored inside the computer's memory. The value of a variable can be changedina
program. It means that, in a program, if a variable contains value 5, then later we

can give itanothervalue that replaces the value 5.

Each variable has a unique name called identifier and has a data type. Data
type describes the type of data that can be stored in the variable. C language has
different data types such as int, float, and char. The types int, f. nd char are
used to store integer, real and character data respectivewe 1.2 shows the
matching data types in Clanguage, against different type.‘h da

Type of Data Matching Data Type’i‘\% Sample Values
language IQ)

4

Integer int (', 123
Real float &\Q 23.5
Character char AO ‘a’

Table 1.2: Matching @\‘types against different types of data
In the following, we dlscxgln detail the possible data types and names of
variables. AQ
1.3.3 Data Typ®(0f a Variable
Each variab@ anguage has a data type. The data type not only describes the
type of data to be stored inside the variable but also the number of bytes that the
compiler needs to reserve for data storage. In the following, we discuss different

data types provided by Clanguage.

DID YOU KNOW?

Some compilers use two bytes of memory to store an int value. In such
compilers, anintvalue ranges from -32,768 to 32,768.

ComputerScience -X Unit1:IntroductiontoProgramming

Integer - int (signed/unsigned)

Integer data type is used to store integer values (whole numbers). Integer
takes up 4 bytes of memory. To declare a variable of type integer, we use
the keyword int.

Signed int: A signed int can store both positive and negative values
ranging from -2,147,483,648 to 2,147,483,647. By default, type int is

considered as a signed integer.

Unsigned int: An unsigned int can store only positive va@h nd its value

ranges from 0 to +4,294,967,295. Keyword unsigned i used to declare
anunsigned integer. .\:\'

Floating Point - float &Q

Float data typeis used to store areal n (number with floating point)

up to six digits of precision. To decl@a variable of type float, we use the
keyword float. A float uses 4 ers of memory. Its value ranges from
34X10%t034X10% (s)\

Character—char | OQ

To declare characte&@e variables in C, we use the keyword char. It takes
upjust byte@g?hory for storage. A variable of type char can store one

charactero@

1.3.4Nam Variable

Each variable must have a unique name or identifier. Following rules are used to

name avariable.

1.

A variable name can only contain alphabets (uppercase or lowercase),

digits and underscore _sign.

2. Variable name must begin with a letter or an underscore, it cannot begin
with a digit.

3. Areserved word cannot be used as a variable name.

ComputerScience -X

Unit1:IntroductiontoProgramming

4. There is no strict rule on how long a variable name should be, but we

should choose a concise length for variable name to follow good design

practice.

Some examples of valid variable names are height, AverageWeight, _var1.

Encircle the valid variable names among the following:

_Hello, Tvar roll_num Air23Blue float
Case $car name =color o oat
O
Important Note: \\'Q

Good programming practice suggests that w hauld give appropriate
name to a variable, that describes its purpo%g. In order to store salary
of a person, appropriate variable name c be salary or wages.

1.3.5 Variable Declaration Q

We need to declare a variable befo&we can use it in the program. Declaring a

variable includes specifying its @a type and giving it a valid name. Following
syntax can be followed to d _latea variable.

data_ty, e@xriable_name;
Some examples O(Gid variable declarations are as follows:
unsigne age;
float height;
int salary;

char marital status;

Multiple variables of same data type may also be declared in a single statement,

as shown in the following examples:
unsigned int age, basic_salary, gross_salary;

int points_scored, steps;

ComputerScience -X Unit1:IntroductiontoProgramming

float height, marks;

char marital_status, gender;

A variable cannot be declared unless we mention its data type. After declaring a
variable, its data type cannot be changed. Declaring a variable specifies the type
of variable, the range of values allowed by that variable, and the kind of
operations that can be performed on it. Following example shows a program
declaring two variables:

X

void main()
(Ny

char grade; &
int value; @
J A

1.3.6 Variable Initialization Q

Assigning value to a variable for th€ first time is called variable initialization. C

language allows us to initializ riable both at the time of declaration, and
after declaring it. For initia{q;g a variable at the time of declaration, we use the
following general structuré.

datg~type variable_name = value;

Following ew shows a program that demonstrates the declaration and
initialization oftwo variables.

w

#include<stdio.h>
void main()
{
char grade; //Variable grade is declared
int value = 25; /*Variable value 1s declared and
initialized. */
grade = 'A'; //Variable grade is initialized
}
- J

ComputerScience -X

Unit1:IntroductiontoProgramming

()
"‘ ACTIVITY 1.8

Write a program that declares variables of appropriate data types to store your personal

data. Initialize these variables with the following data:

initial letter of your name
initial letter of your gender
yourage

your marks in 8" class

~

your height N
oF

ComputerScience -X Unit1:IntroductiontoProgramming

:

B Computers need to be fed a series of instructions by humans which
tell them how to perform a particular task. These series of instructions
are known as a computer program or software.

B The process of feeding or storing the instructions in the computer is
known as computer programming and the person who knows how
to write a computer program correctly is known as a programmer.

B Computer programs are written in languages called programming
languages. Some commonly known programmi@nguages are
Java, C, C++, Python. N\

B A collection of all the necessary tools for p?«amming makes up a
programming environment. Program& environment provides
us the basic platform to write and ex @ programs.

B A software that provides a &amming environment which
facilitates the programme iting and executing computer
programs is known as an %Qgrated Development Environment
(IDE).

B Atext editoris a sofqge that allows programmers to write and edit
computer progr{@ Il IDEs have their own specific editors.

m A complle\x@ software that is responsible for conversion of a

Y

computer gram written in some programming language to
machi guage code.
mE rogramming language has some primitive building blocks and

follows some grammar rules known as its syntax.

B Every programming language has a list of words that are predefined.
Each word has its specific meaning already known to the compiler.
These words are known as reserved words or keywords.

B A program is divided into three parts. Header section is the part
where header files are included. Main section corresponds to the
main function and the body of the main function includes
everything enclosed in the curly braces.

- /

ComputerScience -X

Unit1:IntroductiontoProgramming

-

Comments are the statements that are ignored by the compiler and
do not get executed. To include additional information about the
program, comments can be used.

Constants are the values that do not change. The three types of
constants are integer constants, real constants and character
constants.

Variables is a name given to a memory location as the data is
physically stored inside the computer’'s memory. Each\variable has a
unique name or identifier by which we can refer to& variable, and
an associated data type that describes the typ nstant that can
be stored in that variable.

A variable must be declared before its'(lé@Van’able declaration

includes specifying variable's data E@d givingitavalid name.

Assigning value to a variable f e first time is called variable
initialization. The varialeC? be initialized at the time of

J

declaration or after declara}_ﬁ\Qn.
Q\.}

O\O

)

2@

S

N\

ComputerScience -X Unit1:IntroductiontoProgramming

Q1 Multiple Choice Questions

1)

2)

3)

4)

5)

6)

7)

A software that facilitates programmers in writing computer programs is
known as
a) acompiler b) an editor ¢)anIDE d) adebugger

is a software that is responsible for the conversion of program
files to machine understandable and executable code.
a) Compiler b) Editor c) IDE ugger

Every programming language has some primitiv%@iing blocks and
follows some grammar rules known as its N
a) programming rules b) syntax c) bumks d) semanticrules
A list of words that are predefined c)jgﬂust not be used by the
programmer to name his own variableéir nown as .
a) auto words b) reserve S
c) restricted words d)pred% words
include statements are writte section.
a) header J ®§n
are addeé‘.ﬁthe source code to further explain the techniques
and algorith by the programmer.
a) Messagao b) Hints c) Comments d) Explanations

Qre the values that do not change during the whole execution

c) comments d) print

of program.
a) Variables b) Constants c) Strings d) Comments

8) Afloatuses bytes of memory.

a)3 b) 4 c)5 d)6

9) Forinitializing a variable, we use operator.

10)

a) > b) =)@ d)?
can be thought of as a container to store constants.

a) box b) jar c) variable d) collection

ComputerScience -X

Unit1:IntroductiontoProgramming

Q2 True or False

1) An IDE combines text editors, libraries, compilers and debuggers in a

single interface.

T/F

2) Computers require the conversion of the code written in program file to

machine language in order to execute it. T/F
3) Columnisareserved wordin C programming language. T/F
4) *comment goes here*is avalid comment. T/F
5) float canstore areal number upto six digits of precision. T/F

Q3 Define the following.

Q4 Briefly answer the following questions.

1) IDE 2) Compiler 3)Reserved Words 4) Main section of gram
5) char data type @)

1) Why do we need a programming environment? R
2) Write the steps to create a C programfilein n& of your lab computer.
3) Describe the purpose of a compiler.

4) Listdown five reserved words in C pro
5) Discuss the main parts of the struc
6) Why do we use commentsin pr,

&ing language.

e of aC program.
mming?

7) Differentiate between constaé\and variables.

8) Write down the rules for n@

ing variables.
nd int.

9) Differentiate between I@
10)How can we declqa:?ﬁnitialize avariable?

Q5 Match the colu d

A ~ B C
1) IDE &éo a) Machine executable code

2) Text Edito\r) b) include statement

3) Compiler c) Python

4) Programming Language | d) CLion

5) Reserved words e) /* (a+b) */

6) Link Section f) Notepad

7) Body of main() g) struct

8) Comment h) {}

ComputerScience -X Unit1:IntroductiontoProgramming

Programming Exercises

Exercise 1

e With the help of your teacher open the IDE installed on your lab computer for
writing C programs.
e Write the following program in the editor and save it as “welcome.c”.
#include <stdio.h>
#include <conio.h>
void main()
{
/*A simple C language program*/ \&
printf(“Welcome to C language”); OO

getch();
) O

e Run the program to see Welcome to C langu%@l ted on the screen as
output.

Exercise 2 &@

Write a program that declares variables @propriate data types to store the

personal data about your best friend.dnitialize these variables with the following

data: O

e initial letter of hisname Q

e initial letter of his geré.;p
e hisage

e hisheight QQ}

\$QP

USER INTERACTION

Students Learning Outcomes

After completing this unit students will be able to
B Useoutput functions like printf()
B Useinput functions like
o scanf()
o getch() O\&
B Usestatement terminator (semicolon)

B Define format specifiers \\'Q

o Integer - %i

o Decimal - %d &6
o Float - %f @
o Char-%c &

B Define an escape sequence

B Explain the use of the following escapeQuences using programming examples:
o Newline-\n

o Tab-\t O
B Defineanarithmetic operat
] Usethefollowmgarlthm @erators
o Addition (+)

Subtraction (=
Multiplication (*)

Divisi n@

er (%)

O O O O

!l| |nq ||l —:| =1kt I

ii Eiﬁii&ﬁg

USER INTERACTION

B Usetheassignment operator

Define relational operators

B Usethefollowing relational operators:

Lessthan (<)

Greaterthan (>)

Lessthan orequal to (<=) \&
Greater than orequal to (> =) O
Equalto (==

Not Equal to (!=) \\,Q

B Definealogical operator &6.\‘

B Use the following logical operators:
o AND (&8) Q)
o OR() A
o NOT(!) O

B Differentiate between the assignmeg chator (=) and equal to operator (==

O o O o O O

Differentiate between the unary an ary operators

[| Defineandexplaintheorderoféc ence of operators

!l| |nq ||l —:| =1kt I

ii Eiﬁiiiﬁ

ComputerScience -X Unit2: Userlnteraction

Unit Introduction:

A computer is a device that takes data as input, processes that data and
generates the output. Thus all the programming languages must provide
instructions to handle input, output and processing of data. In this chapter, we
discuss different pre-built input/output functions available in C language. We
also discuss different operators that we can apply to process the data.

2.1 Input/output (I/0) functions:

We need a way to provide input and show output while writin@%grams. Each
programming language has its keywords or standard Iitkr@unctions for 1/0
operations. C language offers printf function to displ “th output, and scanf

function to get input from user. In the following ;&@h we discuss these two

functions. &@

2.1.1 printf() C)

printf is a built-in function in C prg{ ming language to show output on
screen. Its name comes from’ prmtf@natted that is used to print the formatted
output on screen. All data t '@dlscussed in the previous chapter can be
displayed with przntffunctl%@understand the working of printf function, let's

look at the following e @ program:

#includeds@io.h>
void ma)

{
printf(“Hello World”);

}
Output:

Hello World
- J

In this example, printf function is used to display Hello World on screen.
Whatever we write inside the double quotes “ and " in the printf() function, gets
displayed on screen.

ComputerScience -X Unit2: UserlInteraction

58 AcTiviTY 2.1 .

Write down the output of following code:
include<stdio.h>
void main ()

{
printf(“I am UPPERCASE and this is lowercase”);

o 4 J

\b

ey

~

Write a program that shows your first name in Upp:‘l&e and your last

name in lower case letters on screen. ,(@
J

2.1.2 Format Specifiers

What if we want to display the value of a@le? Let's declare a variable and
then check the behavior of printf. &Q

int age = 35; O

Now | want to display the v‘a@) of this variable age on screen. So, | write the
following statement: @K

printf(“age”);
But, itdoes @@e the purpose, because it displays the following on screen.
age

It does not display the value stored inside the variable age, instead it just displays
whatever was written inside the double quotes of printf. In fact, we need to
specify the format of data that we want to display, using format specifiers. Table

2.1 shows format specifiers against different data typesin Clanguage.

ComputerScience -X Unit2: Userlnteraction

Data Type Format Specifier
int % dor%i

float % f

char % ¢

Table 2.1: Format specifiers for I/0 operations
Suppose we want to show int type data, we must specify it inside the printf by
using the format specifier %d or %i. In the same way, for float type data we must

use %f. Itisillustrated in the following example. &
<[> EXAMPLE CODE 2.2 ——

#include<stdio.h> ®~\l\'

void main() &
{ Q)

float height = 5.8; é

int age = 35;

printf(“My age is %d ?)q height is %f”, age, height);
}

Output: OQ

.

My age is 35 and r@éight is 5.800000
o Q)v

We can observe tha ile displaying output, first format specifier is replaced

J

with the value f@ariable/data after the ending quotation marki.e. age in the
above exar@ and second format specifier is replaced with the second

variable/data.

O\ IMPORTANT TIP ™

When we use %f to display a float value, it displays 6 digits after the decimal point.
If we want to specify the number of digits after decimal point then we can write
%.nf where n is the number of digits. In the above example, if we write the
following statement:

printf(“My age is %d and my height is %.2f”, age, height);
The outputis
My age is 35 and my height is 5.80

o J

ComputerScience -X Unit2: UserlInteraction

Important Note:

Format specifiers are not only used for variables. Actually they are used to
display the result of any expression involving variables, constants, or both,
asillustrated in the following example.

<[> EXAMPLE CODE 2.3 S

include <stdio.h>

void main ()

e . oF
printf(“Sum of 23 and 45 is %d”, 23 +45); O

} RS

Output ®+

LSum of 23 and 45 is 68 &

2.1.3 scanf() &@

scanf is a built-in function in C Iangu%@at takes input from user into the
variables. We specify the expected input
of format specifier. If user enters in

ta type in scanf function with the help
er data type, format specifier mentioned
in scanfmust be %d or %i. Caongider the following example:

<[> EXAMPLE CODE 2.4
g J

~
#include <stdio™h
void main () ‘Q
R\
char grade;
scanf(“%c”, &grade);
&})

In this example, %c format specifier is used to specify character type for the input
variable. Input entered by user is saved in variable grade.

There are two main parts of scanf function as it can be seen from the above code.
First part inside the double quotes is the list of format specifiers and second part
is the list of variables with & sign at their left.

ComputerScience -X Unit2: Userlnteraction

<[> EXAMPLE CODE 2.5 ~

Example
include <stdio.h>
void main ()
{
int number;
printf(“Enter a number between 0-10: »);
scanf(“%d”, &number);
printf(“The number you entered is: %d”, number‘)8&
) O
Output: \Q
Enter a number between 0-10: 4 ®~\~
The number you entered is: 4
N Y « /
Important Note ,&
We can take multiple inputs using aq'géscanf function e.g. look at the
following statement.
scanf (“%d%d%f”, &a, 8@9),
It takes input into two i r type variables a and b, and one float type
variable c. After ei t, user should enter a space or press enter key.
After all the inputs user must press enter key.
N

Write a program that takes roll number, percentage of marks and grade
from user as input. Program should display the formatted output like

following:
Roll No : input value
Percentage : input value %
g Grade : input value)

Important Note

Itis a very common mistake to forget & sign in the scanf function. Without

& sign, the program gets executed but does not behave as expected.

ComputerScience -X Unit2: UserlInteraction

2.1.4 getch()

getch() function is used to read a character from user. The character entered by
user does not get displayed on screen. This function is generally used to hold the
execution of program because the program does not continue further until the
user types a key. To use this function, we need to include the library conio.h in the

header section of program.
<[> EXAMPLE CODE 2.6 ~

include<stdio.h> \&
O

include<conio.h> O
void main () 5\\'0
. Q;*

printf(“Enter any key if you want to exit program ”);

getch();
} Q&

N ya
In the above, program prompts user&\gﬁter a character and then waits for the

J

user's input before finishing the etic ion of program.

</> EXAMPLE CODE 2.7 Su& R
include<stdio.h> &

include<coni

void main ()
N

{ &
char key;

printf(“Enter any key : ”);

key = getch(); //Gets a character from user into variable key

\} J

If we run this program, we notice a difference between reading a character using
scanf and reading a character using getch functions. When we read character
through scanf, it requires us to press enter for further execution. But in case of
getch, it does not wait for enter key to be pressed. Function reads a character and

proceeds to the execution of next line.

ComputerScience -X Unit2: Userlnteraction

2.1.5 Statement Terminator

A statement terminator is identifier for compiler which identifies end of a line. In
C language semi colon (;) is used as statement terminator. If we do not end each
statementwith a; it resultsinto error.

printf(“Hello wOr‘ld”Tsetr?‘t,l?rmg:,!

2.1.6 Escape Sequence \{5
Purpose

Escape sequences are used in printf function inside the * They force printf
ﬂﬁferstand the concept

to change its normal behavior of showing output.
of an escape sequence by looking at the following e&%le statement:
printf(“My name is \“Ali\””);
The output of above statement is C)&
My name is “Ali”
In the above example \" is an escapé%equence. It causes printf to display “ on
computer screen.
Formation of escape sequeh@
Escape sequences conyag%wo characters. The first character is always back
slash (\) and the sec
want to achieve. slash (\) is called escape character which is associated with
each escape\@@énce to notify about escape. Escape character and character
next to it aremot displayed on screen, but they perform specific task assigned to

aracter varies according to the functionality that we

~ DID YOU KNOW?

Besides different escape sequences discussed in this section, following
escape sequences are also commonly used in Clanguage.

Sequence | Purpose Sequence | Purpose
\' Displays Single Quote() |\a Generates an alert sound
\\ Displays Back slash(\) [\b Removes previous char
o J

ComputerScience -X Unit2: UserlInteraction

New Line (\n)

After escape character, n specifies movement of the cursor to start of the next
line. This escape sequence is used to print the output on multiple lines. Consider
the following example to further understand this escape sequence:

3

#include <stdio.h>
void main ()

{

printf(“My name is Ali. \n”); ()E
printf(“I live in Lahore.”); O

}
Output

My name is Ali. &

KI live in Lahore. "(\@)

Important Note: QQ
n

In the absence of an escape se

e, even if we have multiple printf
statements, their output is displayed on a single line. Following example
illustrates this point.. . O

<[> EXAMPLE CODE 2.9
 J
#include<stdiosh>

void main()
N

{
p f(“My name is”);

printf(“ Ahmad”);

}
Output

kMy name is Ahmad

Tab (\t)

Escape sequence \t specifies the /O function of moving to the next tab stop
horizontally. A tab stop is collection of 8 spaces. Using \t takes cursor to the next
tab stop. This escape sequence is used when user presents data with more spaces

ComputerScience -X Unit2: Userlnteraction

</> EXAMPLE CODE 2.10 N

#tinclude<stdio.h>
void main ()

{

printf("Name: \tAli\nFname: \tHammad\nMarks: \t1000");
}
Output

Name: Ali

Fname: Hammad \&
O

KMar‘ks: 1000 o

\4
2.2 Operators _\’:\.Q

The name computer suggests that computation is'fﬁq%ost important aspect of

computers. We need to perform computatig@ data through programming.
We have a lot of mathematical functions t rm calculations on data. We can
also perform mathematical operatlgx in our programs. C language offers

numerous operators to manlpulat d process data. Following is the list of

some basic operator types: OQ
e Assignment operat&e\
e Arithmetic opﬁt@&
e Logicalop
e Relati Qperators
2.2.1 Assi ent Operator

Assignment operator is used to assign a value to a variable, or assign a value of

variable to anothervariable.

Equal sign (=) is used as assignment operator in C. Consider the following

example:
int sum =5;

Value 5 is assigned to a variable named sum after executing this line of code.

ComputerScience -X Unit2: UserlInteraction

Let's have alook atanother example:
int sum = 6;

int var = sum;
First, value 6 is assigned to variable sum. In the next line, the value of sum is

assigned to variable var.

[<>] PROGRAMMING TIME 2.1 N

Write a program that swaps the values of two integer variables.

Program:

void main() \b

{ X
inta=2, b=23, temp;

temp = a; _\L\;

a=b; @

b = temp; &

printf("Value of a after swappi \n", a);

printf("Value of b after swap :M%d\n", b);
&} Q)
2.2.2 Arithmetic Operators \

Arithmetic operators are used t Qorm arithmetic operations on data. Table
2.2 represents arithmetic ope@r with their description.

X it
Operator | Name n\ Description

/ DivisioereKra%cor It is used to divide the value on left side by the
value on right side.
@
* q iplication Operator | It is used to multiply two values.
—
+ %ddition Operator It is used to add two values.

- Subtraction Operator | It is used to subtract the value on right side
from the value on left side.

% Modulus Operator It gives remainder value after dividing the left
operand by right operand.

Table 2.2: Arithmetic Operators
Division
Division operator (/) divides the value of left operand by the value of right
operand. e.g. look at the following statement.

ComputerScience -X Unit2: Userlnteraction

float result = 3.0 / 2.0;

After this statement, the variable result contains the value 1.5.

Important Note
If both the operands are of type int, then result of division is also of type int.
Remainder is truncated to give the integer answer. Consider the following
line of code:

float result = 3/ 2;
As both values are of type int so answer is also an integer which is 1. When
this value 1 is assigned to the variable result of type float, t this 1 is
converted to float, so value 1.0 is stored in variable result. Iﬁ ntto get
the precise answer then one of the operands must \Q‘ floating type.
Consider the following line of code: Q;ﬁ

float result =3.0/ 2; &
In the above example, the value stored in v&@ resultis 1.5.

L1 PROGRAMMING TIME 2.2 A N

/*This program takes as inpu sﬁbe price of a box of chocolates and
the total number of chocola in the box. The program finds and
displays the price of oncbcolate */

include <stdio.h> 6

void main () @K
{ <3

float b rice, num_of chocolates, unit price;
é‘Please enter the price of whole box of chocolates: ”);
scanf(“%f”, &box_price);
printf (“Please enter the number of chocolates in the box: ”);
scanf(“%f”, &num_of_chocolates);
unit_price = box_price / num_of_chocolates;
printf(“The price of a single chocolate is %f”, unit_price);
}
Output:
Please enter the price of whole box of chocolates: 150
Please enter the number of chocolates in the box: 50

KThe price of a single chocolate is 3.000000

ComputerScience -X Unit2: UserlInteraction

Multiplication

Multiplication operator (*) is a binary operator which performs the product of

two numbers. Look at the following statement:

int multiply =5 * 5;

After the execution of statement, the variable multiply contains value 25.

+

<>] PROGRAMMING TIME 2.3 N

/* Following program takes as input the length ana\kﬁidth of a
rectangle. Program calculates and displays the ar‘ea6€>ectangle on

screen. */
include<stdio.h> _\i\oo
<&

void main () &

{
float length, width, area; &@
printf(“Please enter the of rectangle: ”);
scanf(“%f”, &length); Q\Q
printf(“Please enter t@width of rectangle: ”);
scanf (“%f”, &wiqt
area = length * @ 5
printf(“Ar @‘r‘ectangle is : %f”, area);

} S

Output

Please @ he length of rectangle: 6.5
Please enter the length of rectangle: 3
Area of rectangle is : 19.500000
- J

Write a program that takes as input the length of one side of a square
and calculates the area of square.

ComputerScience -X Unit2: Userlnteraction

Addition

Addition operator (+) calculates the sum of two operands. Let's look at the

following statement:
int add = 10 + 10;
Resultant value in variable add is 20.

[<>] PROGRAMMING TIME 2.4 N

/* This program takes marks of two subjects from user and displays

the sum of marks on console. */
#include <stdio.h> OO
void main () s\\'Q
{ ®+
int sum, math, science; &
printf(“Enter marks of Mathematj%”);
scanf(“%d”, &math);
printf(“Enter marks of Sci Q)”);
scanf(“%d”, &science); Q
sum = math + science; s\
printf(“Sum of marks=ds : %d”, sum);
} .
Output %\
Enter marks of MiX@StiCS: 920

Enter marks of Science: 80

KSum of mar‘\ké@ : 170

-

Write a program that takes as input the number of balls in jar A and the
number of balls in jar B. The program calculates and displays the total
number of balls.

Q

N\

The statementa = a + 1; is used to increase the value of variable a by 1. In
C language, this statement can also be written as a++; or ++a;. Similarly,
a--; or--a;isusedtodecrease thevalueofaby 1.

IMPORTANT TIP

ComputerScience -X Unit2: UserlInteraction

Subtraction

Subtraction operator (-) subtracts right operand from the left operand. Let's
look at the following statement:
int result = 20 - 15;

After performing subtraction, value 5 is assigned to the variable result.

Write a program that takes original price of a shirt and discount percentage from
user. Program should display the original price of shirt, disco@%1 price and

price after discount.

L
Modulus operator ®+
Modulus operator (%) performs division of left ﬁrand by the right operand and

returns the remainder value after division. us operator works on integer

data types. Q
int remaining = 14 % 3; \

As, when we divide 14 by 3, we&qua remainder of 2, so the value stored in

variable remaining is 2. 0\0

3.

+
<[>

ME 2.5
ds and displays the right most digit of an input

PROGRAMMING T}

/* This program

number. */ \?
#include @ .h>
void ma@
{
int num, digit;
printf(“Enter a number: ”’);
scanf(“%d”, &num);
digit = num % 10;
printf(“Right most digit of number you entered is: %d”,
digit);
}
Output
Enter a number: 789
KRight most digit of number you entered is : 9

ComputerScience -X Unit2: Userlnteraction

Write a program that takes 2 digit number from user, computes the

product of both digits and show the output.)

()
@28 ACTIVITY 2.8 ~

Write a program that takes seconds as input and calculates equivalent
number of hours, minutes and seconds.

/

Important Note: 6{‘

While writing arithmetic statements in C language, a n mistake is
to follow the usual algebraic rules e.g. writing 6 * yé¥y, and writing x *
X * xasx’etc. Itresultsinacompilererror.

3g8 ncriviry 25 < \

Convert the following algebraic er ns into C expressions.

x=6y+z
X =yz+3

_y+£y ’\O(\
Z=X >, %)
z=(x-2)+

3z X
34 X
y = (X—|— z’+-

2.2.3 Rela'h%al Operators

Relational operators compare two values to determine the relationship between

values. Relational operators identify either the values are equal, not equal,
greater than or less than one another. Clanguage allows us to perform relational
operators on numeric and char type data. Table 2.3 presents relational operators

in Clanguage and their descriptions:

ComputerScience -X

Unit2: Userinteraction

Relational Operator

Description

Equal to

! —

Not equal

>

Greater than

<

Less than

>

Greater than equal to

<

Less than equal to

sl

Table 2.3: Basic relational operators with their

descri

\)

Relational operators perform operations on two operanc@return the result
in Boolean expression (true or false). A true value is repris.~
false value is represented by a 0. This concept is furt%r@u trated in Table 2.4.

ed by 1, whereas a

N\
Relational Expression | Explanation 0.’ Result
. v
D= = 5is equal to 57 X True
50=7 5isnot e@hgﬁ True
5>7 5is gr@ rthan7? False
5<7 52&5 than 77 True
N4
5>=5 (C‘S‘is greater than or equal to 57 |True
5<=4 \\@ 5isless than orequal to 4? False

Table

llustration of relational operators with examples

2.2.4 Assi toperator (=) and equal to operator (==):
In C language) == operator is used to check for equality of two expressions,

whereas = operator assigns the result of expression on right side to the variable
on left side. Double equal operator (==) checks whether right and left operands
are equal or not. Single equal operator (=) assigns right operand to the variable

on left side.
Important Note

We can also use printf function to show the results of a relational
expression, e.g.look at the following examples:
printf(“%d”, 5==5); // This statement displays 1

printf(“%d”, 5> 7);

// This statement displ

ays 0

ComputerScience -X Unit2: Userlnteraction

58 AcTivITY 2.10) \

Consider the variables x=3, y=7. Find out the Boolean result of following
expressions.

(2+5)>y (x+4)==y
x!l=(y-4) v/2)>=x
-1<x (x*3)<=20)

(S

2.2.5 Logical Operators

Logical operators perform operations on Boolean expressions‘abd produce a
Boolean expression as a result. @)

As we have studied that result of a relational operationl&oolean expression,
so logical operators can be performed to evaluate f@iore than one relational
expressions. Table 2.5 shows the logical operatf)&gffe ed by C language.

Operator Dfm ion
& @S‘I}cal AND

TS
[l (5\\ Logical OR

' .

!) AQ Logical NOT
Table 2.5: Basj \g{cal operators and their description
AND operator (&&):

i\ @
AND operator && ta&two Boolean expressions as operands and produces the
result true if bg s operands are true. It returns false if any of the operands is

false. Table ws the truth table for AND operator.
Expression Result
False && False False
False && True False
True && False False
True && True True

Table 2.6: Truth table for AND operator

ComputerScience -X Unit2: UserlInteraction

OR operator (||):
OR operator accepts Boolean expression and returns true if at least one of the
operandsis true. Table 2.7 shows the truth table for OR operator.

Expression Result

False || False False

False || True True

True || False True

True || True True r&

Table 2.7: Truth table for OR operator OV
NOT operator (!): s\\'Q
NOT operator negates or reverses the value of Bool "EXpression. It makes it
true, if it is false and false if it is true. Table 2.8 présents the truth table for Not

operator. L
Expression R€§l,k’
I(True) %\ alse
I(False) O True

Table 2. uth table for NOT operator
Examples of Logical Oper :
Table 2.9 illustrates theg@ept of logical operators with the help of examples.

Logical Expre’s\s})l Explanation Result
3 <4&&é®) 3islessthan 4 AND 7 is greater | False
?

\ than 87
3==4]|3>1 3isequalto4 OR3is greater |True
than 1?
14>2]||2==2) NOT (4 is greater than 2 OR 2 is |False

equal to 2)?

6<=6&&!(1>2) 6 is less than or equal to 6 AND | True
NOT (1 is greater than 2)?

8>9] (1 <=0) 8 is greater than 9 OR NOT (1is | True
less than or equal to 0)?

Table 2.9: lllustration of logical operators with examples

ComputerScience -X Unit2: Userlnteraction

DID YOU KNOW?

Clanguage performs short-circuit evaluation. It means that:

1- While evaluating an AND operator, if sub expression at left side of the
operator is false then the result isimmediately declared as false without
evaluating complete expression.

2- While evaluating an OR operator, if sub expression at left side of the
operator is true then the result is immediately declared as true without
evaluating complete expression.

- | J

o
8g8 ActviTy 211 O
) h
Assume the following variable values x=4, y=7, z:ae\-}hd out the
resultant expression. @

x==2 || y==8 7@y &8 z<5
z>=5 || x<=-3 AT &s l(true)
L x!=y || y<5 AC)!(Z>X) J

2.2.6 Unary vs Binary Operattg\:\(

All the operators discussed in th@chapter can be divided into two basic types,
based on the number of op ; on which the operator can be applied.

Unary Operators: U&@operators are applied over one operand only e.g.

logical not () o tor has only one operand. Sign operator (-) is another

example of@operator e.g.-5.
Binary Operators: Binary operators require two operands to perform the

operation e.g. all the arithmetic operators, and relational operators are binary

operators. The logical operators &8 and || are also binary operators.

Clanguage also offers a ternary operator thatis applied on three operands}

ComputerScience -X Unit2: UserlInteraction

2.2.7 Operators’ Precedence:

If there are multiple operators in an expression, the question arises that which
operator is evaluated first. To solve this issue, a precedence has been given to
each operator (Table 2.10). An operator with higher precedence is evaluated
before the operator with lower precedence. In case of equal precedence, the
operator at left side is evaluated before the operator at right side.

Example:
result =18 /2*3+7%3+ (5*4); // evaluate ()
result=18 /2*3+7%3+20; //eval%e/
result =9 *3+7%3+ 20; // evaluate *
result =27 +7 %3 + 20; / /. uate %
result =27 +1 + 20; aluate +
result = 28 + 20; &Q(evaluate +
result = 48; .
Operator Pre;{wce
-
0 AO
| \‘S
<l % ,\\U 3
S ‘:\O 4
> K ‘\‘Qz , K= 5
==\, I= 6
@ & 7
@ I 8
= 9

Table 2.10: Operators with their precedence

S8 AcTivITY 2.12) .

Find out the results of the following Expressions:
16/ (5 + 3)
7+3*(12 +2)
25%3*4
34-9*2/(3*3)
18/ (15-3 *2)

ComputerScience -X Unit2: Userlnteraction

= SUMMARY .

We need a way to provide input and show output while writing
programs. Each programming language has its keywords or standard
built-in function for I/O operations.

printf is a built-in function in C programming language. It's name
comes from “print formatted” that is used to show the formatted
outputonscreen.

Format specifiers are used to specify format of date&type during
input and output operations. Format specifier is alw, receded by a
percentage (%) sign. ‘Q

scanf is a built-in function in C language t T\ls;kes input from user
into the variables

getch() function is used to read a/@ter from user. This function
accepts characters only. The ch@t entered by user does not get

displayed on screen. q

Astatementterminatori)s&en ifier for compiler which identifies end
of a statement. In C @ ge semi colon (;) is used as statement
terminator. . O

Escape sequenc&@es printf to escape from its normal behavior. Itis
the combi%@ of escape character(\) and a character associated
with special functionality.

Esca &uence \n specifies the movement of cursor to start of the
n e. This escape sequence is used to display the output on
multiple lines.

Escape sequence \t specifies the movement of cursor to the next tab
stop horizontally. A tab stop is collection of 8 spaces.

Basic operators are arithmetic operators, assignment operator,
relational operators, and logical operators.

Arithmetic operators Arithmetic operators are used to perform
arithmetic operations on data to evaluate arithmetic functions.
Arithmetic operators are +, -, *, /, %.

)

ComputerScience -X Unit2: UserlInteraction

-

Modulus operator is also a binary operator, which performs division\

of left operand to the right operand and returns the remainder value

after division. Modulus operator works on integer data types.

Relational operators compare two values to determine the

relationship between values.

Logical operator performs operation on Boolean expressions and

returns a Boolean value as aresult.

Logical AND operator returns true when the result of e@essmns on

both sides is true whereas the Logical OR operatorc@ms true when

either of the two expressions is true.

Logical NOT operator returns true if the e@&sslon is false and vice

versa.

Short circuiting is to deduce the @It of an operation without
computing the whole expre55|o &

There are three types of og rs. Unary, binary and ternary

operators require one, t\ﬁQ

perform the operation.

Precedence tells wfn@?peratlon should be performed first. Different

operators havi@ erent precedence. Operators with higher

precedence aréevaluated first and the ones with lowest precedence

are evaluatediast.

nd three operands respectively, to

)

N

ComputerScience -X Unit2: Userlnteraction

Q.1 Multiple Choice Questions

1) printfisused to print type of data.
a) int b) float c) char d) All of them
2) scanfisa in C programming language.
a) Keyword b) library c) function d) none of them
3) getch() isused to take asinput fromuser.
a) int b) float c) char *ofthem
4) Let the following part of code, what will be the vq@g variable a after
execution:

inta=4; @&Q
floatb =2.2;
a=a*b; Q&

a)8.8 b) 8 Q 8.0 d)8.2
5) Which of the following is a vali e of code.
a)int=20; b) grade c) line=thisisaline; d) none of them
6) Which operator has h%@(precedence among the following:
a)/ c)> d)!
7) Which of the fo&l&vmg is not a type of operator:
a) Arithmef{i dperator c) Relational operator
b) Ch@&tor d) Logical operator
8) The operator % is used to calculate)
a) Percentage b) Remainder c) Factorial d) Square

9) Which of the following is a valid character:

a) 'here' b) “a” c)'9 d) None of them
10) What is true about C language:

a) Cis not a case sensitive language

b) Keywords can be used as variable names

c) All logical operators are binary operators

d) None of them

ComputerScience -X Unit2: UserlInteraction

Q.2 True or False

1) Maximum value that can be stored by an integer is 32000. T/F
2) Format specifiers begin with a % sign. T/F
3) Precedence of division operator is greater than multiplication operator. T/F
4) getch is used to take all types of data input from user. T/F
5) scanfis used for output operations. T/F

Q.3 Define the following.
1) Statement Terminator 2) Format Specifier 3) Escapggequence
4) scanf 5) Modulus Operator OO

Q.4 Briefly answer the following questions. O

1)
2)
3)
4)
5)
6)
7)
8)
9)

What is the difference between scanf and gel‘%g\~

Which function of C language is used to dfﬁ\l output on screen?
Why format specifiers are important@speciﬁed in 1/0 operations?
What are escape sequences? Why@ need them?

Which operators are used for tic operations?

What are relational operator, s\Describe with an example.

What are logical operatogs? Describe with an example.

What is the differencx@ een unary operators and binary operators?
What is the differe{ge etween == operator and = operator?

10) What is meaQ@recedence of operators? Which operator has the

highest ph@dence in C language?

Q.5 Write dan output of the following code segments.

a)

inchede<stdio.h>
void main ()
{
intx=2,y=3,2z=6;
int ansl, ans2, ans3;
ansl=x/z*y;
ans2 =y +z/y*2;
ans3 =z / x+x *y;
printf(“%d %d %d”, ansl, ans2, ans3);
}

ComputerScience -X Unit2: Userlnteraction

b) # include<stdio.h>
void main ()

{
printf ("nn \n\n nnn\nn\nt\t") ;
printf ("nn /n/n nn/n\n") ;
}
c¢) #include<stdio.h>
void main()

{
inta=4, b;
float c = 2.3; 6&
b=c*a;

printf(“%d”, b); \"QO
} A=
d) #include<stdio.h> &Q
void main()

N
{ inta=4*3/(5+1)+€}‘8;

printf(“%d”, a); Q
¥
e) #include<stdio.h> Q)
void main() Q
{ ’\O
printf(“Ud5A((5>3)8& (4>6)) [| (7>3)));
} \g\Q)
Q.6 Identify errors-in the following code segments.
a) #includ io.h>
void @)
{
inta, b=13;
b=a%2;
printf(“Value of b is : %d, b);

ComputerScience -X Unit2: UserlInteraction

b) #include<stdio.h>
void main ()
{
inta, b, c,
printf(“Enter First Number: ”);
scanf(“%d”, &a);
printf(“Enter second number : ”);
scanf(“%d”, &b);
a+b=c;
]
¢) #include<stdio.h>; 6(‘
main () O
{ O
int num; ®~\~

printf(Enter number: ”’); &
scanf(%d, &num);

}s Q)

d) include<stdio.h> C)

int main () Q

{ LN
float f; O
printf[“Enter e:”];
scanf(“%c”, s

Exercise1 | (@)
The criteria @Iculation of wagesinacompany is given below.

Basic Salary =Pay Rate Per Hour =~ X Working Hours Of Employee

Overtime Salary =Overtime Pay Rate X Overtime Hours Of Employee

Total Salary = Basic Salary + Overtime Salary
Write a program that should take working hours and overtime hours of
employee as input. The program should calculate and display the total salary of
employee.

ComputerScience -X Unit2: Userlnteraction

Exercise 2

Write a program that takes Celsius temperature as input, converts the
temperature into Fahrenheit and shows the output. Formula for conversion of
temperature from Celsius to Fahrenheit is:

F=%C+32

Exercise 3
Write a program that displays the following output using single printf statement:

Sl

1 2 3 4

Exercise 4 O

Write a program that displays the following output usir&*ﬁgle printfstatement:
lam a Boy

I live in Pakistan @&
I am a proud Pakistani &
Exercise 5 C)

A clothing brand offers 15% discounton‘each item. A lady buys 5 shirts from this
brand. Write a program that calcula@ otal price after discount and amount of

discountavailed by the lady. Ori | prices of the shirts are:
Shirt1 = 423 N
Shirt2 = 320 {9

Shirt3 = 270 QQ
Shirt4 = 680
>’

Shirt5 = 520
Note: Use 5'variables to store the prices of shirts.

Exercise 6

Write a program that swaps the values of two integer variables without help of
any third variable.

Exercise 7

Write a program that takes a 5 digit number as input, calculates and displays the

sum of first and last digit of number.

ComputerScience -X Unit2: UserlInteraction

Exercise 8
Write a program that takes monthly income and monthly expenses of the user
like electricity bill, gas bill, food expense. Program should calculate the
following:
e Total monthly expenses
o Totalyearly expenses
e Monthlysavings
e Yearlysaving \17
e Averagesaving per month OO
e Average expense per month _\’:\.Q
Exercise 9 %
Write a program that takes a character and n er of steps as input from
user. Program should then jump number of steps from that character.
Sample output: Q
Enter character: a \
Entersteps: 2 QO
New character : c ‘\O
Exercise 10 '\6
Write a program th Qe)s radius of a circle as input. The program should

calculate and dis the area of circle.

N\

CONDITIONAL LOGIC

Students Learning Outcomes

After completing this unit students will be able to

Define a control statement

Define a selection statement

Know the structure of if statement

Use if statement \&
Know the structure of if-else statement O

Use nested selection structures .\%,QO
%)

ComputerScience -X Unit3: Conditional Logic

Unit Introduction
In our daily life, we often do certain tasks depending upon the situation e.g. | will
go for a walk if | wake up at 6 am. If the weather turns cloudy, | will take umbrella
with me. If Sara passes the exam, | will gift her a watch. All these decisions are
taken on the basis of condition. If the condition is true, we perform the specified
task, otherwise we do not. Sometimes, if the condition is not true then we
perform some other task. This is called conditional logic. In this chapter, we
discuss how to implement conditional logicin C programming Ian%@ge.
3.1 Control Statements Q)
In order to solve a problem, there is a need to control th&w of execution of a
program. Sometimes we need to execute one set of instructions if a particular
condition is true and another set of instrugtions 'if the condition is false.
Moreover, sometimes we need to repeat a'&{ statements for a number of
times. We can control the flow ofﬁgdam execution through control
statements. There are three types of C&Qt | statementsin Clanguage.

1- Sequential Control Stateme tp

2- Selection Control Stateméh

3- Repetition Control S ents
Sequential control i%&efault control structure in C language. According to
the sequential con@l, all the statements are executed in the given sequence. Till
now, we havey g&orked according to the sequential control. In this chapter, our

focusis on theselection control statements.

3.2 Selection Statements
The statements which help us to decide which statements should be executed
next, on the basis of conditions, are called selection statements.
Two types of selection statements are:
1. Ifstatement

2. If-else statement

ComputerScience -X Unit3: Conditional Logic

3.2.1 If statement

Clanguage provides if statement in which we specify a condition, and associate
a code toit. The code gets executed if the specified condition turns out to be true,
otherwise the code does not get executed.

Structure of if statement

If statement has the following structure in C language:

if (condition) 6&

Associated Code O
Here is a brief description of different components r@ed in the general
structure of if statement. Q)

1- In the given structure, if is a keyword th,@)llowed by a condition inside
parentheses ().

2- A condition could be any valid exg S|on including arithmetic expressions,
relational expressions, logical e ssions, or a combination of these. Here

are a few examples of valid e&?&ssmns that can be used as condition.

a- 5 \% (true)
b- %Q) (true)

c- -5 (false)
@755 4 (true)
== (false)

f- (4 >5) (true)
g- (5>4)&8&(10<9) (false)
h- (5>4)][(9<10) (true)

Any expression that has a non-zero value calculates to true, e.g. expressions a
and b above produce a true value, but the expression c produces a false value.
The expression can also include variables, in that case values inside the

variables are used to calculate the true/ false value of the expression.

ComputerScience -X Unit3: Conditional Logic

3- Theassociated code is any valid C language set of statements. It may contain
one or more statements.

The following flow chart shows the basic flow of an if statement.

Associated Code O\&

m .\SQ
Q,/\
If we want to associate more than one statements to an if statement, then they
need to be enclosed inside a { } blg{e, ut if we want to associate only one
statement, then although it may nclosed inside { } block, but it is not
mandatory. Itis demonstrated tl‘@gh the following examples.

.\O
</> EXAMPLE CODE 3.1 2, .
#include<stdi%
void main() \Q

{ %)
if (a %2 ==0)

{
printf(“The variable a contains an even value.”);
printf(“\nYou are doing a great job.”);
}
}
Output:

The variable a contains an even value.
_You are doing a great job.

ComputerScience -X Unit3: Conditional Logic

Because, when value 12 is divided by 2, it gives a remainder equal to O, so the
condition inside if parentheses is true. As both the printf statements are inside {}
block, so both the statements get executed.

Now look at the following example:

x

#tinclude<stdio.h>
void main()

{
int a = 4; 6&
int b =5; O

if (a>b) \\'Q
printf(“The value of a is gr&@han b.”);

printf(“\nYou are doing a great<job:”);
} &
Output: Q

kYou are doing a great job. g‘\Q

/

As the condition inside the if parentheses is false, and the statements following
the if statement are not insi&@} block, so only the 2™ statement is executed
because without a {} bIo%Q y 1% statement is considered to be associated with

the if statement.

Using if statem@@n C

Let's under the concept of if statement using different examples.

@ PROGRAMMING TIME 3.1 N

Problem:
Write a program in C language that takes the percentage of student as
an input and displays "PASS” if the percentage is above 50.

#include <stdio.h>
void main()

{

float percentage;

printf (“Enter the percentage: ”);
. J

ComputerScience -X Unit3: Conditional Logic

[scanf (“%f”, &percentage);
if (percentage > 50)
printf (“PASS\n”);
}
Output:

On the input 47, program simply ends because 47 is less than 50 and the
condition turns false.

N
Enter the percentage : 47 @'

When 67.3 is entered as an input, "PASS” get@@éd on console
because condition is true, as 67.3 is grea

t 50.
A oy
Enter the percentage GQU : ’
PASS
&
N7

. O\ J
+- * .
[2] PROGRAMMING TIVIE 3.2 N
Problem:)

A marketing QQ calculates the salary of its employees according to the
a

foIIowin$@J
Gross Salary = Basic Salary + (Number of Items Sold X 8) + Bonus

If the number of sold items are more than 100 and the number of broken
items are 0, then bonus is Rs. 10000, otherwise bonus is 0.

Write a program that takes basic salary, the number of sold and broken
items as input from user, then calculates and displays the gross salary of the

employee.
AN J

ComputerScience -X

Unit3: Conditional Logic

:

Program:
#include<stdio.h>
void main()

{
int basic_salary, 1items_sold, items_broken,
gross_salary;
int bonus = 0;
printf(“Enter the basic salary: “); 6&
scanf(“%d”, &asic_salary);
printf(“Enter the number of items sol ’.\\9;
scanf(“%d”, &items_sold); <
printf(“Enter the number of it $oken: “Y;
scanf(“%d”, &items_broken); %
if (items_sold > 100 && i @_br‘oken == 0)
bonus = 10000; Q
gross_salary = basic_élar‘y + (items_sold * 8) + bonus;
printf(“Gross s@ar‘y of the employee 1is %d”,
gross_salary) ;‘\
}
Description: AQ}
Inthe above ple, bonus s initialized to 0 because if the number of sold
items aWore than 100, then automatically bonus is considered 0.
Inside t statement, it is checked that whether the number of sold items

are greater than 100. If so, the bonus is assigned 10000. It is to be noted that
gross salary is calculated outside the if block, because whether the number
kof sold items are more than 100 or not, the gross salary must be calculated. J

ComputerScience -X Unit3: Conditional Logic

Following figure explains the flow of program with the help of a flow chart.

Start
Bonus=0

INPUT
basicsalary,
itemssold,
itemsbroken

2N
| grosssalary fkpﬁ\c‘salary +(itemssold*8)+bonus |
N

—
AQ / grosglsneflary /
@Qp (ston

Write a program that takes the age of a person as an input and displays
“Teenager” if the age lies between 13 and 19.

Write a program that takes year as input and displays "Leap Year” if the
input year is leap year. Leap years are divisible by 4.

ComputerScience -X Unit3: Conditional Logic

O\ IMPORTANT TIP

Properly indent the instructions under if statement using tab. It improves
the readability of the program.

3.2.2 If-else Statement

Till now, we have demonstrated how to execute a set of instructions if a particular
condition is true, but if the condition turns out to be false then we are not doing
anything. What if we want to execute one set of instructior8&~a particular

atements under if

condition is true and another set of instructions if the cond't@1 Is false. In such
situations we use if-else statement. It executes the set.@

statement if the condition is true, otherwise executgq@set of statements under

else statement. %

General structure of the if-else statement is@o OWS:

if (condition) Q
Associated Code O
else . OQ
Associated, e
Associated code of if s @ahent is executed if the condition is true, otherwise the

code associated with else statement is executed. Following flow chart shows the

structure of @@fatement

Code Associated Code Associated
with with
ELSE statement |IF statement
Y |

ComputerScience -X Unit3: Conditional Logic

Important Note

An if statement may not have an associated else statement, but an else
statement must have an if statement to which it is associated.

Before else keyword, if there are multiple statements under if, then they must be
enclosed inside the { } block, otherwise compiler issues an error. In order to
understand this concept, let's look at the following example.

</> EXAMPLE CODE 3.3 —_— N

#include<stdio.h> [ERROR] €15 @.‘chou’.c Cl]
void main() (iated if
{ Q).\’.\V

int a = 15; &

if (a%2==0) Q)
printf(“The variable ntains an even value.”);
printf(“\nYou are doing a great job.”);

else 3
printf(“The var%&ble a contains an odd value.”);

}
. ‘0 J

The above code cannot b @hpiled, because as discussed earlier, without a { }
block only one statex@ls associated with if statement. In this case, the 1%
statement i.e. printf(“The variable a contains an even value.”); is
associated wit &atement but the 2™ statement i.e. printf(“\nYou are
doing a gﬂ&$job.”); is not associated with if statement. So, the else part is
also disconnected from if statement. We know that an else block must be
associated to an if block. In order to solve this problem, we can put both
statements before else keyword inside {} block.

DID YOU KNOW?

A set of multiple instructions enclosed in braces is called a block or a
compound statement.

Unit3: Conditional Logic

ComputerScience -X

Following code demonstrates this.

<[> EXAMPLE CODE 3.4 ~

#include<stdio.h>
void main()
{
int a = 15;
if (a%2==0)
{
printf(“The variable a contains an value.”);
printf(“\nYou are doing a great e@
¥
else &
printf(“The variable a/@ains an odd value.”);
¥
Output:
The variable a contains an o %lue
- J
Use of if-else statement Q

The following program tak $\acharacter as input and displays "DIGIT" if the
character entered b&sé\s a digit between 0 to 9, otherwise displays “NOT
DIGIT".

a
<[> EXAMPLE C%DE 3.5

-
tdio.h>
void main()
{
char input;
printf (“Please enter a character: “);
scanf (“%c”, &input);
if (input >= '0" && input <= '9")
printf (“DIGIT\n”);
else
printf (“NOT DIGIT\n”);
}
-)

ComputerScience -X Unit3: Conditional Logic

If user enters a digit, e.g. 5, then "DIGIT" is displayed on the screen.

Please enter a character: 5

DIGIT
If user enters another character, e.g. k, then "NOT DIGIT" is displayed as the
condition turns false.

Please enter a character: k

NOT DIGIT

A\
O\J
Write a program that takes the value of body temper ofapersonasan
input and displays “You have fever.” if body tem e@&we is more than 98.6
otherwise displays “"You don't have fever.” '{
Q

£
\

N\
If there are more than one instructi?g&ler if statement or else statement,
enclose them in the form of a blo% herwise, the compiler considers only
one instruction under it an@)further instructions are considered

independent. AQ
’\\)

Important Note \%
C language also Q\@es an if-else-if statement that has the following
structure.
if (condit'ég

C execute if condition 1 is true;
else if (condition 2)

Code to execute if condition 1 is false but condition 2
is true;

IMPORTANT TIP

else if (condition N)

Code to execute if all previous conditions are false but
condition N is true;

else
Code to execute if all the conditions are false;

ComputerScience -X Unit3: Conditional Logic

2] PROGRAMMING TIME 3.3 .

Problem:

Write a program that takes percentage marks of student as input and
displays his grade. Following table shows grades distribution criteria.

Percentage Grade
80% and above A
o/ _ (o)
70% - 80% B Ajs‘
\.J

60% - 70%

C
50% - 60% D @
Below 50% F ’&U

Program: &t
#include<stdio.h> QC)

void main() S\
{ @)
float percent @Q
printf (“Ent éhe percentage: ”);

scanf (‘Q@%per‘centage);
en

if (p% age >= 80)
printf (“A\n”);

if (percentage >= 70)
printf (“B\n”);

else if (percentage >= 60)
printf (“C\n”);

else if (percentage >= 50)
printf (“D\n”);

else
printf (“F\n”);

Unit3: Conditional Logic

ComputerScience -X

3.2.3 Nested Selection Structures
Let's closely observe the general structure of an if-else statement given below:
if (condition)
Associated Code
else
Associated Code
The code associated with an if statement or with an else statement can be any
valid C language set of statements. It means that inside an if block or inside an
else block, we can have other if statements or if-else statements Qso means that
inside those inner if statements or if-else statements we ave even more if

statements or if-else statements and so on. Con 'ﬁ’ml statements within

conditional statements are called nested selection str.

tures.

All the following structures are valid nested& on structures.

if (conditionl is true)
if (condition2 is true) g\
Associated code O

<

Associated\@g

\&

else

'wc;nditionl is true)
if (condition2 is true)
Associated code
else
if (condition3 is true)
Associated code

if (conditionil is};ue)
if (co @onz is true)
ésociated code
else
Associated code
else

if (condition3 is true)
Associated code

if (conditionl is true)
if (condition2 is true)
Associated code
else
Associated code
else
if (condition3 is true)
Associated code
else
Associated code

ComputerScience -X

Unit3: Conditional Logic

Use of Nested Selection Structures

In order to understand the usage of nested selection structures, let's have a look

at the following example problem.

[<>] PROGRAMMING TIME 3.4

Problem:
An electricity billing company calculates the electricity bill according to the
following formula.

Bill Amount = Number of Units Consumed X Unit Price
There are two types of electricity users i.e. Commercial and e Users. For
home users the unit price varies according to the follom(ip@

~

Units Consumed Unit Price ‘W
Units < = 200 Rs 12,(@

-
Units > 200 but Units < = 400
Units > 400 C 20

For commercial users, the unit pricearies according to the following:

Units Consumed 0 Unit Price
Units < = 200 i AQ Rs 15
Units > 200 b@l{s <=400 |Rs20

4
Units > ‘0@ Rs 24

Write a prog ﬁat takes the type of consumer and number of units
consumed a&ut. The program then displays the electricity bill of the
user. $

Program:

#include<stdio.h>

void main()

{
int units, unit_price, bill;
char user_type;
printf(“Please enter h for home user and c for commercial
user: ”);
scanf(“%c”, &user_type);
printf(“Please enter the number of units consumed: “);
scanf (“%d”, &units);)

ComputerScience -X Unit3: Conditional Logic

(" :
if(units <= 200)

if(user_type == 'h")
unit_price = 12;
else if(user_type == 'c")
unit_price = 15;
else if(units > 200 && units <= 400)
if(user_type == 'h")
unit_price = 15;

else if(user_type == 'c") \ l
unit_price = 20; 0
else

&
if(user_type == 'h")
unit_price = 15; ®+

else if(user_type == 'c")
unit_price = 24; %
bill = units * unit_price;
printf(“Your electricityé@s %d”, bill);
\C
&

Q IMPORTANT TIP Q - h

N\

In compound statemen’%@ a common mistake to omit one or two braces
while typing. To avoid {Ql error, it is better to type the opening and closing
braces firstand t@ e the statements in the block.

The eligibility criteria of a university for its different undergraduate
programsis as follows:

BSSE Program: 80% or more marks in Intermediate

BSCS Program: 70% or more marks in Intermediate

BSIT Program: 60% or more marks in Intermediate

Otherwise the university do not enroll a student in any of its programs.
Write a program that takes the percentage of Intermediate marks and tells

for which programs the studentiis eligible to apply.
AN J

ComputerScience -X

DID YOU KNOW?

Unit3: Conditional Logic

scenarios.

C programming language also provides Switch-Case structure to deal with
conditions, but Switch-Case structure is applicable only in limited
scenarios. The if, if-else structures cover all the possible decision making

Write a program that takes two

Choice o tion
integers as input and asks the user to C)
enter a choice from 1 to 4. The|l w(PAddition
program should perform the|) P “’\:' Subtraction
operation according to the given table N —
and display the result. 3 Oa MU pIEsigen
LAY Division
\ L)

4

3.2.4 Solved Example ProblerrRQ

+

<>] PROGRAMMING TIME 3.5

.

Problem: \
Write a program that@&ays larger one out of the three given numbers.
Program:
include <stdie,h>
void main)@
{
int"'nl, n2, n3;
printf ("Enter three numbers");
scanf ("%d%d%d", &nl, &n2, &n3);
if (n1 > n2 & nl1 > n3)
printf ("The largest number is %d", nl);
else if (n2 > n3 & n2 > nl)
printf ("The largest number is %d", n2);
else
printf ("The largest number is %d", n3);

ComputerScience -X

Unit3: Conditional Logic

[<>] PROGRAMMING TIME 3.6

Problem:

Write a program that calculates the volume of cube, cylinder or sphere,
according to the choice of user.

Program:

#include<stdio.h>

void main()

{
int choice; 6&

float volume; O

printf ("Find Volume\n");

printf ("1.Cube\n2.Cylinder‘\n3.Spf&@tter‘ your choice:
)5

scanf ("%d", &choice); ,&

if (choice == 1)
{ Q
float length; s\
printf ("Enter.Length:
scanf ("Vﬁ"GQngth),
volume th * length * length;

pr‘Q@ olume is %f", volume);
}

:ﬂg@hoice == 2)

float lengthl, radiusi;

printf ("Enter Length: ");

scanf ("%f", &lengthl);

printf ("Enter Radius: ");

scanf ("%f", &radiusl);

volume = 3.142 * radiusl * radiusl * lengthl;

printf ("Volume is %f", volume);

ComputerScience -X Unit3: Conditional Logic

i

else if (choice == 3)

{

float radius;

printf ("Enter Radius: ");

scanf ("%f", &radius);

volume = 3.142 * radius * radius * radius;
printf ("Volume is %f", volume);

else 6&

printf (“Invalid Choice”); \QO

o &Q;\L\, /

e)
Write a program that finds and displa é@a of a triangle, parallelogram,
rhombus or trapezium according toQQoice of user.

J

Qc‘)\
&
¢
R\
o

\\

ComputerScience -X

Unit3: Conditional Logic

~

The flow of program execution is controlled through control
statements.

Sequential control is the default control structure in C language.
According to the sequential control, all the statements are executed in
the given sequence.

The statements which help us to decide which statements should be
executed next, on the basis of conditions, are ca'lied selection

statements.
In if statement we specify a condition, and ass e acodetoit. The
code gets executed if the specified conditi rns out to be true,

otherwise the code does not get executed.

A condition could be any valid&ssion including arithmetic
expressions, relational expre@; s, logical expressions, or a
combination of these. g

The associated code in i16§@t ment is any valid C language set of
statements.

If-else statement e@s the set of statements under if statement if
the condition is and executes the set of statements under else
otherwise. \ @

An if statement may not have an associated else statement, but an else
stat \gmust have an if statement to which it is associated.
S& statements within selection statements are called nested
selection structures.

ComputerScience -X Unit3: Conditional Logic

Q1 Multiple Choice Questions

1)

2)

3)

4)

5)

6)

7)

8)

Conditional logic helpsin)
a) decisions b) iterations c) traversing d) all
statements describe the sequence in which
statements of the program should be executed.

a) Loop b) Conditional ¢) Control d) All

In if statement, what happens if condition is false?

a) Program crashes 6&

b) Index out of bound error @)

¢) Further code executes \\'Q

d) Compiler asks to change condition ®+

e A
if (a
<L
else :) QQ
if (a>4
X

a--;
Which of the following stae{nents will execute?
a)a++; c) both (a) and (b) d) None
Which of the follow @s the conditionto check ais afactor of c?
a)a%c——O %a==0 c)a*c==0 d)a+c==0
A condition ca c any expression.
a) arithe b) relational
c) Io@ d) arithematic, relational or logical
An if statement inside another if statement is called structure.
a) nested b) boxed c) repeated d) decomposed
A set of multiple instructions enclosed in braces is called a
a) box b) list c) block d)job

Q2 Define the following.

1)

Control Statements 2) Selection Statements 3) Sequential Control

4) Condition 5) Nested Selection Structures

ComputerScience -X Unit3: Conditional Logic

Q3 Briefly answer the following questions.
1) Why do we need selection statements?
2) Differentiate between sequential and selection statements.
3) Differentiate between if statement and if else statement with an example.
4) Whatisthe use of nested selection structures?

5) Write the structure of if statement with brief description.
Q4 Identify errors in the following code segments. Assume that
variables have already been declared. Q)

O
a) if (x 2 10) \Q
X

printf (“Good”); Q)
b) if (a<b&&b<c); &
sum=a+b+c; @
else C}
multiply =a * b * c; Q

c¢) if (a<7<b) (5)\
printf (“7”);
OQ

.

d) if (a==b&| x= Q
flag = trG&;

else
flaaﬁfalse;
e) if (=60 || product == 175)
printf (“Accepted %c), sum);
else

if (sum >= 45 || product > 100)
printf (“Considered %d” + sum);
else
printf (“Rejected”);

ComputerScience -X Unit3: Conditional Logic

Q5 Write down output of the following code segments.
a) int a = 7, b = 10;
a=a+b;
if (a>208& % b<20)
b=a+b;
printf (“a=%d, b =%d”, a, b);
b) int x = 45;
if (X + 20 * 7 == 455) 6’7
printf (“Look’'s Good”); \QO
else Q;\:\'

printf (“Hope for the Best”);

c¢) charcl="Y", c2="N"; ,&

intnl=5, n2=9;
nl=nl+1; QO
cl=c2; (5)\
if (n1 ==n2&& cl == CQ
printf (“%dé‘?@and %C =%c”, nl, n2, cl1, cl);
else Q)\
if (n1 2 & cl ==c2)

éopr‘intf (“%d < %d and %c = %c”, nl, n2, cl, c2);
\‘§§e

printf (“Better Luck Next Time!”);

ComputerScience -X

Unit3: Conditional Logic

d) inta=34,b=32, c=7,d=15;

e)

a=b+c+d;

if (a<100)
a=a%*2;
b=Db*c;
c=c+d;
if(a>b&&c==d)
{
c=d;
b=c; 6&
a=b;

O
) N
else ~\~
if(a>b&&c>d||b>=d+c)&®
{
d=c*c; /&
e O
) <Q
printf (“a=%d, b=%d, c=7®s\1=%d”, a, b, c,d);
intx=5,y=7,z=%\
if (x%2==0)
>

X++;
else AQ)\
X=VY+2Z;

printf (fSx= %d\n”, x);

if (== 188y %2==1882%2==1)
rintf (“All are 0dd”);

if(x>y || x<z)

{
if(x>y)
y++;
else
if(x<z)
X++;
}

printf (“x=%d, y=%d, z=%d", x, y, z);

ComputerScience -X Unit3: Conditional Logic

Programming Exercises

Exercise1

Write a program that takes two integers as input and tells whether first one is a
factor of the second one?

Exercise 2

Write a program that takes a number as input and displays “YES” if the input
numberis a multiple of 3, and has 5 in unit's place e.g. 15, 75.

Exercise3
Following is the list of discounts available in “Grocery Mart". 0&

Total Bill Discount Q\O
1000 0% Qj*
2500 20% \

5000 3;.AV
10000 Qo

Write a program that takes total bill as input and tells how much discount the
user has got and what is the d'b@nted price.

Exercise 4
Write a program that t @s input, the original price and sale price of a product

and tells whether th uct is sold on profit or loss. The program should also
tell the proflt/loss@centage

Exercise 5

Write a prog that takes as input, the lengths of 3 sides of a triangle and tells
whetheritisarightangle triangle or not. For aright angled triangle,
hypotenuse® =base’ + height’.

Exercise 6
Following is the eligibility criteria for admission in an IT University.

+ Atleast60% marksin Matric.

+ Atleast 65% marksin Intermediate (Pre-Engineering or ICS).

« Atleast65% marksin entrance test.

ComputerScience -X Unit3: Conditional Logic

Write a program that takes as input, the obtained and total marks of Matric,
Intermediate and Entrance Test. The program should tell whether the student is
eligible or not.

Exercise 7
Write a program that calculates the bonus an employee can get on the following
basis:

Salary Experience with Company | Bonus Tasks Bonus

10000 2 Years 5 15QL

10000 3 Years 10 2600

25000 3 Years 4 (12000

75000 4 Years 7 A ®+ 3500

100000 5 Years 19@ N 5000

The program should take as input, the sal %perience and number of bonus
tasks of the employee. The program sh splay the bonus on the screen.

Qc’)\
&
¢
R\
o

\\

DATA AND REPETITION

Students Learning Outcomes

After completing this unit students will be able to

Understand the structure of array

Declare and use one dimensional arrays

Use variable as anindexin array

Read and write values in array \&
Explain the concept of loop structure OO
Know that for loop structure is composed of: \\'Q

o For
oF

o Initialization expression &
o Testexpression

o Body of the loop ,&

o Increment/decrement expression

Explain the concept of a nested loop O
R

Use loops to read and write datain ar

ComputerScience -X Unit4: Dataand Repetition

UnitIntroduction

While writing computer programs, we may find situations where we need to
process large quantities of data. The techniques that we have learnt so far may
not seem suitable in these situations. So we need to have better mechanisms for
storage and processing of large amounts of data. Another common problem
that we face is how to repeat a set of instructions for multiple times without
writing them again and again. This chapter discusses the ways that C

programming language provides in order to deal with data and itions.
4.1 Data Structures \QO

In the previous chapters, we learnt how to store pj{@%}jata in the variables.
What if we need to store and process large amount of data e.g. the marks of 100
students? Probably, we need to declare 100&{ les, which does not seem an
appropriate solution. So, high level %@)mming languages provide data

structures in order to store and organize'data. A data structure can be defined as

follows: O

Data structure is a c%@uer to store collection of data items in a
Different data structures are available in C programming language, however this

chapter discus @y one of them, which is called Array. It is one of the most
n@jata structures.

specific layout.

commonly
4.1.1 Array

An array is a data structure that can hold multiple values of same data type e.g. an
int array can hold multiple integer values, a float array can hold multiple real
values and so on. An important property of array is that it stores all the values at

consecutive locations inside the computer memory.

ComputerScience -X Unit4: Dataand Repetition

4.1.2 Array Declaration

In Clanguage, an array can be declared as follows:
4)

type of data to be
stored in array

maximum number of
elements that can be stored

data_type array_name[array_sizej;
|

identifier of

N
array
§ o)

N
\
If we want to declare an array of type int that holds thé‘t\’;fy wages of a laborer

for seven days, then we can declare it as follows:
int daily wage[7]; l&
Following is the example of the declaraQQa float type array that holds marks

of 20 students. \
(@)

float marks[20]; Q

.

4.1.3 Array Initializati@\

Assigning values to aaé for the first time, is called array initialization. An array
can be initialized a@e time of its declaration, or later. Array initialization at the

time of decla can be donein the following manner.
data_type array_ name[N] = {valuel, value2, value3,........ , valueN};

Following example demonstrates the declaration and initialization of a float

array to store the heights of seven persons.

ComputerScience -X Unit4: Dataand Repetition

float height[7] = {5.7, 6.2, 5.9, 6.1, 5.0, 5.5, 6.2};
Here is another example that initializes an array of characters to store five vowels
of Englishlanguage.
char vowels[5] ={'a"', 'e', 'i', '0o', 'u'};
Important Note:
If we do not initialize an array at the time of declaration, then we need to
initialize the array elements one by one. It means that we cannot initialize
all the elements of array in a single statement. This is dem ated by

the following example. O
i S

<[> EXAMPLE CODE 4.1 & <
[ini agzing whole

void main() ERROR|3Aay ‘after declaration
{ £ nét) allowed

int array[5]; Qé\
array[5] = {10, 20, 30, Q }s <

| &

N — 4

AN J

The compiler generates an @on the above example code, as we try to

initialize the whole arra&@ne separate statement after declaring it.
4.1.4 Accessing a@%lements

Each element of a@rray has an index that can be used with the array name as
array_namefi %’to access the data stored at that particular index.

First element has the index 0, second element has the index 1 and so on. Thus
height[0] refers to the first element of array height, height[1] refers to the second
element and so on. Figure 4.1 shows graphical representation of array height

initialized in the last section.

&\Q\ &\'\\ &\7'\ &\"“\ &\b‘\ &\"\ &\6\
‘\é\‘)\\ ‘\é\‘)\\ ‘\é\‘)‘\ ‘\é\‘)‘\ ‘\é\‘)‘\ ‘\é\‘)‘\ ‘\é\ >
57 | 6.2 | 5.9 6.1 5.0 | 5.5 | 6.2< Value
Index——— 0 1 2 3 4 5 6

Figure 4.1: Graphical representation of array height

ComputerScience -X

Unit4: Dataand Repetition

~

[<>] PROGRAMMING TIME 4.1

Write a program that stores the ages of five persons in an array, and then
displays onscreen.

Solution:
#tinclude<stdio.h>
void main()

{
int age[5];
/* Following statements assign values a{(different
indices of array age. We can see that the fj value is
stored at index @ and the last value is st@ed at index 4
*/
age[@] = 25; .\:\
age[1] = 34; &@
age[2] = 29;
age[3] = 43; @
age[4] = 19; &
/* Following statement Qg)dys the ages of five persons
stored in the array */
printf(“The ages of e persons are: %d, %d, %d, %d,
%d”, age[@], age[1 e[2], age[3], age[4]);
g O Y
v N\
[£2] PROGRAMMING TiME 4.2 N
o
Write a programthat takes the marks obtained in 4 subjects as input from
the user, calcm@s the total marks and displays on screen.
Solution; %,
#includexstdio.h>
void main()
{
float marks[4], total_marks;
printf(“Please enter the marks obtained in 4 subjects:
“);
scanf (“%f%f%f%st”,&marks[0], &marks[1l], &marks[2],
&marks[3]);
total marks = marks[@] + marks[1] + marks[2] + marks[3];
printf(“Total marks obtained by student are %f”,
total_marks);
k} J

ComputerScience -X Unit4: Dataand Repetition

4.1.5 Using variables as array indexes

Avery important feature of arrays is that we can use variables as array indices e.g.
look at the following program:

)

#tinclude<stdio.h>
void main()

{

int array[5] = {10, 20, 30, 40, 50};

N

int i;
/* Following statements ask the user to @%t an index

into variable i. */
printf(“Please enter the index whose@lue you want to

display”);
scanf(“%d”, &i); &
/* Following statement disp the value of the array

at the index entered by user.

printf(“The value is %d”Qg)ay[i]);

k} 11\ J
O

Following program demonstrat at when we change the value of a variable,
its later usage uses the updat’es@lue.

<[> EXAMPLE CODE 4.2 ~
#include<stdio.h>

void main(

{

ihrtyarray[5] = {10, 20, 30, 40, 50};

inti=2;

/* Following statement displays value 30, as i contains
2 and the value at array[2] is 30 */

printf(“%d”, array[i]);

i++;

/* Following statement displays value 40, as i has been
incremented to 3 and the value at array[3] is 40. */
printf(“\n%d”, array[i]);

ComputerScience -X Unit4: Dataand Repetition

4.2 Loop Structure

If we need to repeat one or more statements, then we use loops. For example, if
we need to write Pakistan thousand times on the screen, then instead of writing
printf(“Pakistan®); a thousand times, we use loops. C language provides
three kind of loop structures:

1- Forloop

2- Whileloop

3- Do Whileloop \&
In this chapter, our focus is on for loops. OO
4.2.1 General structure of loops \\.Q

If we closely observe the process that humans f ol for repeating a task for
specific number of times then it becomes easieffor us to understand the loop
structures that C language provides us for @%g the repetitions.

Let's assume that our sports instru s us to take 10 rounds of the

running track. How do we perfor&t is task? First we set a counter to

zero, because we have not ye @1 a single round of the track. Then we

start taking the rounds. Afténéach round we increase our counter by 1

and check whether weQ@e completed 10 rounds or not yet. If we have

not yet completed& 0 rounds then we again take a round, increase

our counter by@and again check whether we have taken 10 rounds or

not. Wer. his process till our counter reaches 10.
Different pro§ramming languages follow similar philosophy in the loop
structures for repeating a set of instructions.

4.2.2 General syntax of for loop

In C programming language, for loop has the following general syntax.
for(initialization; condition; increment/decrement)

{
Code to repeat

ComputerScience -X Unit4: Dataand Repetition

In order to understand the forloop structure let's look at the following flow chart.

Initialization
Increment/
Decrement
Execute
Condition Associated Code

N
O
O

N
\’\.
<
From the flow chart, we can observe the followi %ence:

1- Initialization is the first part to be ex (S\g
our countervariable and then m he condition part.

2- Condition is checked, and if it 2
loop. O

3- Iftheconditionis true,«@%)dy of the loop is executed.

4- After executing th(%dy of loop, the counter variable is increased or
decreased dep,é thg on the used logic, and then we again move to the

step 2. \Q

After executi gé body of loop, the counter variable is increased or decreased

in a for loop. Here we initialize

out to be false, then we come out of

depending onthe used logic, and then we again move to the step 2.

</> EXAMPLE CODE 4.4 .

for(inti=90; i< 3; i++)

{

}
Output:
Pakistan
Pakistan

Pakistan
o J

printf(“Pakistan\n”);

ComputerScience -X Unit4: Dataand Repetition

Description:
If we observe the written code and compare it to the flowchart description,

we can see the following sequence of execution.
1- Initialization expression is executed, i.e. int i = 0. Here counter

variable (is declared and initialized with value 0.
2- Conditionis tested, i.e. i<3. As variable (has value 0 which is less than

3 so condition turns out to be true, and we move to the body of the

loop \{5

3- Loop body is executed, i.e. printf(”Pakistan\n"); t Pakistan is
displayed on screen.

4- Increment/decrement expression is executed +. Thus the value
of i is incremented by 1. As varlable h\Zﬂue 0, so after this

statement i contains value 7.
5- Now condition is again tested. B , value of i is 7 which is less

than 3 so condition again tur@ut to be true and loop body is
executed again i.e. PakistaQ again displayed on screen. The value

of igetsincremented to
6- Now condition is agaimtested. Because, value of i is 2 which is less

than 3 so Pakista/’)s@gain displayed on screen. The value of i gets

incremented t
7- Now condliti again tested. Because, value of i is 3 which is not less

than 3, he condition turns out to be false and control comes out of
L)

2] PROGRAMMING TIME 4.3 §

Write a program that displays the values from 1 — 10 on the computer
screen.

Program:
for(inti=1; 1i<=10; i++)
{
printf(“%d\n”, i);
}
o _/

ComputerScience -X Unit4: Dataand Repetition

i

Description:
Consider the example program given above.

e Firstofall, thevalue of iis setto 7 and then condition is checked.

e Astheconditionis true (1<=10) so loop body executes. As in the loop
body, we are displaying the value of the counter variable, so 7 is
displayed on console.

e After increment, the value of { becomes 2. The condition is again
checked. Itis true as (2<=10) so this time 2is printed.

e The procedure continues till 70 is displayed and aftef4icfement the
value of i becomes 71. Condition is checked and {t'turns out to be
false (11>10) so the loop finally termina@ter printing the

L numbers from 7to 70. P Q)

N
~
Write a program that displays the table aof 2.
prog play Q{g
O\ IMPORTANT TIP 6\

Always make sure that ’&ﬁ%ondition becomes false at some point,
otherwise the loop repe initely and never terminates.

\J

DID YOU KNOW?
Each f is called an iteration.
ach run of Z}?p is called an iteration

. N
[<>] PROGRAMMING TIME 4.4 .

Write a program that calculates the factorial of a number input by user.
Program Logic:

When we want to solve a problem programmatically, first we need to know
exactly what we want to achieve. In this example, we are required to find the
factorial of a given number, so first we need to know the formula to find
factorial of anumber.

NI=1*2*3*4* _*(N-1)*N

We can see the pattern that is being repeated, so we can solve the problem
Kusing forloop.

J

ComputerScience -X Unit4: Dataand Repetition

g
Program:

#include<stdio.h>
void main()
{
int n, fact =1;
printf(“Please enter a positive number whose factorial
you want to find”);
scanf(“%d”, &n);

for(inti=1; i<=n; i++)

{ o
fact = fact * i; \Q

} o

printf(“The factorial of input&@t %d is %d”, n,

fact);

) Q

Description: &

Following table shows the Workingq gram, if the input number is 5. It
demonstrates the changesin the \i{lu sofvariables at each iteration.

Iteration | Value of counter oHiiion Loopbody |Result

X) fact=1

1 =1 &‘0' TRUE (1<=5) | fact =fact *i |fact=1*1=1

2 =2 TRUE (2<=5) | fact =fact *i |fact=1*2=2

3 26) TRUE (3<=5) |fact =fact *i | fact=2*3=6

4 \NF TRUE (4<=5) | fact =fact *i | fact=6+*4=24

5 =5 TRUE (5<=5) |fact=fact*i |fact=24*5=120

6 i=6 FALSE (6>5)

o J
4.2.3 Nested Loops

Let's carefully observe the general structure of aloop.
for(initialization; condition; increment/decrement)

{

Code to repeat

}

ComputerScience -X Unit4: Dataand Repetition

We can observe that Code to repeat could be any valid C language code. It can

also be another forloop e.g. the following structure is a valid loop structure.

for(initialization; condition; increment/decrement)

{
for(initialization; condition; increment/decrement)
{
Code to repeat
}

} &
When we use aloop inside another loop, itis called nested k(@@tructure.
When do we use nested loops? \
When we want to repeat a pattern for multiple tim&@ we use nested loops,
e.g. if 10 times we want to display the numbe%om 1 -10. We can do this by
writing the code of displaying the numbers — 10 in another loop that runs

10 times.

53 .

Problem:
Write a program that 5 ti%@ilsplays the numbers from 1-10 on computer

screen.

N
Program: AQ)
#include<st\s® .h>

\{/oid m@@

for(inti=1; i<=5; i++)

{
for(int j =1; j <=10; j++)
{
printf(“%d ”, j);
}
printf(“\n”);
}
}
o)

ComputerScience -X Unit4: Dataand Repetition

i

Output:

Here is the output of above program.
12345678910
12345678910
12345678910
12345678910
12345678910

Description:

As we understand the working of inner loop, so here Ie6®cus on outer

loop.
1- Forthevalue i =1, condition in outerlooplﬁ\« ed whichiis true (1

<= 5), so whole inner loop is executed !Si

displayed.
2- When control gets out of inne@p printf(“\n”’); is executed

which inserts a new line on c@
3- Then (is incremented an it'"becomes 2. As it is less than 5, so

bers from 1-10 are

condition is true. T’é oIe inner loop is executed, and thus
numbers from 1 —~1®

thelnnerloopn% znelsmsertedagaln
4- After five ti @ isplaying the numbers from 1 — 10 on screen, the

value ets incremented to 6 and condition of outer loop turns

fa%@outer loop also terminates.
N\

[<>] PROGRAMMING TIME 4.6 N

Problem:

Write a program to display the following pattern of stars on screen.
*

e again displayed on screen. Coming out of

- /

*k*x

*kkk

*kkkk

3k 3k %k %k %k k

- /

ComputerScience -X Unit4: Dataand Repetition

(Program:

#tinclude<stdio.h>
void main()

{
for(inti=1; i<=6; i++)
{
for(int j=1; j<=1; j++)
printf(“*”);
printf(“\n”);

}
Description: s\\'QO

Here is the description of above code. "\‘

1- As we have to display 6 lines containin’g&ars, so we run the outer
loop from 1to 6.

2- We can observe that in the giveﬁgattern we have 1 staron 1" line, 2
stars on 2™ line, 3 stars o line and so on. So, the inner loop is
dependent on the outer@) , i.e. if counter of outer loop is 1 then
inner loop should r ime, if the counter of outer loop is 2 then
inner loop sho @\Gn 2 times and so on. So, we use the counter of
outer Ioog@e termination condition of inner loop i.e. j <= i.

3- When outer loop counter i has value 1, inner loop only runs 1 time,
SO n@ tar is displayed. When outer loop counter is 2, the inner
I ns 2 times, so 2 stars are displayed and the process is
repeated until six lines are complete.

N Wy
N
Write a program that displays the tables of 2, 3,4, 5 and 6.
_/
Q IMPORTANT TIP R

N\

We can use (f structures inside loop structures or loop structures inside if
structures in any imaginable manners.

ComputerScience -X Unit4: Dataand Repetition

4.2.4 Solved Example Problems

<P PROGRAMMING TIME 4.7 ™

Problem:
Write a program that counts multiples of a given number lying between
two numbers.
Program:
#include <stdio.h>
void main ()
{ \&

int n, lower, upper, count = 0; 0
printf ("Enter the number: "); O
scanf ("%d", &n);
printf ("Enter the Ilower c@.\:pper' limit of
multiples:\n"); 3{
scanf ("%d%d", &lower, &uppe @
for(int i = lower; i <= upp &1++)

if(i%n==09) G

count++; Q

printf ("Number of m iples of %d between %d and %d are
%d", n, lower, upp@ count);

}

= _/

5] PROGRAMMING TIME 4.8 .

Problem:

Write afgm to find even numbers in integers ranging from n7 to n2
(where n'Ns greater than n2).

Program:

#include <stdio.h>

void main ()

{
int nl, n2;
printf ("Enter the lower and upper 1limit of even
numbers:\n");

scanf ("%d%d", &n2, &nl);
_ J

ComputerScience -X Unit4: Dataand Repetition

{
for (int i =nl1; i >=n2; I--)
{
if(i%2==0)
printf ("%d ", i);

N
O

s .
ot)

J

¥
¥
¥
N s
/\Q,ﬂl‘

Problem:
Write a program to determine whether a@number is prime number or

not.
Program: Q
#include <stdio.h> \
void main ()
: &

int n; N

int flag = K

printf (“Enter a number: ");

scanf‘@d" &n);

ti=2;1i<n; i++)

if (n%1i==0)

flag = 0;
}
if (flag==1)
printf ("This is a prime number™);
else
printf ("This is not a prime number");
}
-

~

ComputerScience -X Unit4: Dataand Repetition

[<>] PROGRAMMING TIME 4.10 N

Problem:
Write a program to display prime numbers ranging from 2 to 100.
Program:
include<stdio.h>
int main ()
{
int flag; \&
for (int j = 2; j <=100; j++) OO
{ 0
flag = 1; ®+
for (inti=2; 1< 3j; i++)
{ &
if(j%i==0) C)
{ Q
flab 0;
b
} .\O
if (fla{% 1)
{ \9
\Q printf ("%d ", j);
}
N Wy
4.2.5 Loops and Arrays

As variables can be used as array indexes, so we can use loops to perform
different operations on arrays. If we want to display the whole array, then instead
of writing all the elements one by one, we can loop over the array elements by
using the loop counter as array index.

ComputerScience -X Unit4: Dataand Repetition

In the following, we discuss how loops can be used to read and write values in
arrays.
1) Writing values in Arrays using Loops: Using loops, we can easily take
inputin arrays. If we want to take input from user in an array of size 10, we can

simply use aloop as follows:

</> EXAMPLE CODE 4.5 ~
int a[10];
for (int i =0; i < 10; i++) &
scanf ("%d", &a[i]); ,@O—/
[<2] PROGRAMMING TIME 4.11 ¢ QJ+

Problem:
Write a program that assigns first 5 mu% 23toanarray of size 5.

~

Program:

#include<stdio.h> Q

void main() 6\

{ N\

int multiples[5]G)

for (int i = '@< 5; i++)
muﬂ@ﬂs[i]= (i+1) *23;

x} A Q) J

V
2) Readi ues from Arrays using Loops: Let's see how loops help usin

reading the values from array. The following code can be used to display the

elements of an array having 100 elements:

<I> EXAMPLE CODE 4.6
for (inti=90; i<100; i++)
printf("%d ", a[i]);

The following code can be used to add all the elements of an array having 100

elements.

ComputerScience -X Unit4: Dataand Repetition

<[> EXAMPLE CODE 4.7 ~

int sum = 9;
for(inti=0; 1< 100; i++)
sum = sum+ a[i];
printf(“The sum of all the elements of array is %d”, sum);

Write a program that takes as input the marks obtained in nék"tulation by
30 students of a class. The program should display the average marks of

the class. d\:\'
4.2.6 Solved Example Problems %]

[£5] PROGRAMMING TIME 4.12 Q 8

Problem: C)
Write a program that adds corres oQing elements of two arrays.
Program: O
#include <stdio.h> Q
void main () ’\O
{ 9
int a[] # 54, 22, 67, 34, 29, 19};
int b[l= {65,73,26, 10, 4, 2, 84, 26};
for (@ i=0; i<8; i++)
$ printf ("% ", a[i] + b[i]);
}
N Wy

ComputerScience -X Unit4: Dataand Repetition

EITT N

Data structure is a container to store collection of data items in a
specific layout.

An Array is a data structure that can hold multiple values of same data
type. It stores all the values at contiguous locations inside the
computer's memory.

In Clanguage, an array can be declared as follows:

data_type array_namel[array size]j;
o Data Type s the type of data that we want to stor he array.
o Array Name is the unique identifier that to refer to the

array.

o Array Size is the maximum number Q@nts that the array
can hold.

Assigning values to an array fo @first time, is called Array
Initialization. An array can be i@ed at the time of its declaration,
or later. Array initialization a@e Ime of declaration can be done in
the following manner.
data_type array_nam = {valuel, value2, value3s,..., valueN};
Each element of an@y has an index that can be used with the array
name as array_nd\@[index] to access the data stored at that particular
(ndex. Vari nalso be used as array indices.
Loop Structure is used to repeat a set of statements. Three types of
loo &rloop,whileloop,do-whileloop.
In rogramming language, for loop has the following general
structure.

for(initialization; condition; increment/decrement)

{
}

When we use a loop inside another loop, it is called nested loop

Code to repeat;

structure. We use nested loops to repeat a pattern multiple times.
Loops make it easier to read and write values in arrays.

J

ComputerScience -X Unit4: Dataand Repetition

Q1 Multiple Choice Questions

1)

2)

3)

4)

5)

6)

7)

8)

9)

Anarrayisa___ structure.
a) Loop b) Control c) Data d) Conditional
Array elements are stored at memory locations.
a) Contiguous b) Scattered c) Divided d) None
If the size of an array is 100, the range of indexes will b
a) 0-99 b) 0-100 c) 1-100 Qay2-102
structure allows repetition of a set tructions.
a) Loop b) Conditional c) Con@@ d) Data
is the unique identifier, o refer to the array.
a) Data Type b) Array name O&y size d) None
Array can be initialized N Q declaration.
a) At the time of b) After O c) Before d) Botha &b

Using loops inside Ioopé(\alled loops.
a) For b lle c) Do-while d) Nested

\ Cpart of for loop is executed first.
a) Conditi b) Body
c) Initi Q’bn d) Increment/Decrement

make it easier to read and write values in array.

a) Loops b) Conditions c) Expressions d) Functions

10) To initialize the array in a single statement, initialize it

declaration.
a) At the time of b) After c) Before d) Botha &b

ComputerScience -X Unit4: Dataand Repetition

Q2 Define the following terms.
1) Data Structure 2) Array 3) Array Initialization
4) Loop Structure 5) Nested Loops
Q3 Briefly answer the following Questions.
1) Is loop a data structure? Justify your answer.
2) What is the use of nested loops?
3) What is the advantage of initializing an array at the time of declaration?
4) Describe the structure of a for loop. @)
5) How can you declare an array? Briefly describe th parts of array

declaration. ~\s.\'
Q4 Identify the errors in the following c&géegments.

a) int a[] = ({2},{3},{4}); &@
b) for (inti =0, i< 10, i++) QC)

printf (“%d\n”, i) ;g\

c¢) intal[] ={1,2,3,4,5
for (int j=0; j <%\ ++)

printf (“%d.; a(J));

d) float f[1.4, 3.5, 7.3, 5.9};

int si 5
for (4 =-1; n<size; n--)

printf (“%f\n”, f[n]);

e) int count = 0;
for (inti=4;i<6;1i--)
for (int j =1, j < 45; j++)
{
count++;
printf (“%count”, count)

}

ComputerScience -X Unit4: Dataand Repetition

Q5 Write down output of the following code segments.

a)

b)

<)

d)

e)

int sum = 9, p;

for (p=5; p<=25; p=p+5)
sum = sum + 5;

printf (“Sum is %d”, sum);

int i;
for (i=34; i<=60; i=1%*2)

printf (“* «); \&
O

for (int i =50; i <= 50; i++) 5\"00
{ ®+
for (3 = 1; 3 >=48; 3--) A
printf (3 = %d \ ”/{Q)
printf (“i = %d\n”, i);
) O

inti, arr[] ={2, 3, 4, 55\6, 7, 8%;
for (i=0;1<7;i++) O

{ N\
printf (“%d&ar‘r‘[i] *arr[i]);

i++; \
} R\
int i, \Q
floa [1=11.1, 1.2, 1.3};
float ar2[] ={2.1, 2.2, 2.3};
for (1=0; 1< 3; i++)

for (j=1; j < 3; j++)

printf (“%f\n”, arl[i] * ar2[j] *1i * j);

ComputerScience -X Unit4: Dataand Repetition

Programming Exercises

Exercise 1

Use loops to print the following patterns on console.

*kkk*k
a)
*kkk*k

b) A
BC
DEF Oét‘
GHIJ ")
X

KLMN

Exercise 2 &0

Write a program that takes two positive integ&@nd basinputand displays the
value of a”. Q

Exercise 3 Q
Write a program that takes two n@ers as input and displays their Greatest

Common Divisor (GCD) using E@ean method.

Exercise 4 %\

Write a program to d&@ factorials numbers from 1 to 7. (Hint: Use Nested
Loops)

Exercise 5 éo

Write a pro that takes 10 numbers as input in an array and displays the

product of first and last element on console.
Exercise 6
Write a program that declares and initializes an array of 7 elements and tells how

many elements in the array are greater than 10.

Students Learning Outcomes

After completing this unit students will be able to

Explain the concept and types of functions
Explain the advantages of using functions

Explain the signature of function (Name, Arguments, Return type) \&

Explain the following terms related to functions
o Definition of a function
o Useofafunction

O
N
F

ComputerScience -X Unit5: Functions

Unit Introduction

A good problem solving approach is to divide the problem into multiple smaller
parts or sub-problems. Solution of the whole problem thus consists of solving
the sub-problems one by one, and then integrating all the solutions. In this way,
it becomes easier for us to focus on a single smaller problem at a time, instead of
thinking about the whole problem all the time. This problem solving approach is
called divide and conquer. C programming language provides us with functions
that allow us to solve a programming problem using the divid*and conquer
approach. In this chapter, we will learn the concepigchnctions, their
N

5.1 Functions &Q;\‘

advantages, and how to work with them.

Afunctionis a block of statements which perfo particular task, e.g. printfisa
function that is used to display anything mputer screen, scanf is another
function that is used to take input fr user. Each program has a main

function which performs the tasks &grammed by the user. Similarly, we can
write other functions and usethe@m tiple times.

5.1.1 Types of Functio O

There are basically two t of functions:
1) Built-inFuncti $
2) User Defi &nctions

Built-in Fu&ns

The functions which are available in C Standard Library are called built-in
functions. These functions perform commonly used mathematical calculations,
string operations, input/output operations etc. For example, printf and scanf are

built-in functions.
User Defined Functions

The functions which are defined by a programmer are called user-defined

functions. In this chapter we will learn how to write user defined functions.

ComputerScience -X Unit5: Functions

5.1.2 Advantages of Functions
Functions provide us several advantages.

1) Reusability: Functions provide reusability of code. It means that whenever
we need to use the functionality provided by the function, we just call the
function. We do not need to write the same set of statements again and again.

2) Separation of tasks: Functions allow us to separate the code of one task
from the code of other tasks. If we have a problem in one function, then we do
not need to check the whole program for removing the probl@kWejust need

to focus at one single function. @)

3) Handling the complexity of the problem: If we w@% the whole program
as a single procedure, management of thelﬁg ram becomes difficult.
Functions divide the program into sm,{l%mlts and thus reduce the
complexity of the problem.

4) Readability: Dividing the pro%ﬁmto multiple functions, improves the
readability of the program.

5.1.3 Signature of a Functi

A function is a block of s ents that gets some inputs and provides some
output. Inputs of a fun fon are called parameters of the function, and output of
the function is cal@its return value. A function can have multiple parameters,

but it cannot retdrh more than one values.

Function sighature is used to define the inputs and output of a function. The

general structure of a function signature is as follows:
4)

function identifier
|

return_t e unction_name'(data_t e1, data_type2,...,data_typeN);
, ype fi | yp yp ypeN

data type of data types of
return value function parameters

. J

ComputerScience -X

Example Function Signatures:
Table 5.1 shows the descriptions of some functions and their signatures.

Function Description

Function Signature

A function that takes an integer as
input and returns its square.

int square (int);

A function that takes length and
width of a rectangle as input and
returns the perimeter of the
rectangle.

float perimeter (float, float);

o

A function that takes three integers
as input and returns the largest
value among them.

int largest ()@ int, int);

&@

A function that takes radius of a
circle as input and returns the area
of circle. <

Vi

.F

lo&@ea (float);
?C)

A function that takes a characte
input and returns 1, if the character

int isVowel (char);

is avowel, otherwise retm@.
o~

The functi

Table 5@’@?me functions and their Signatures

5.1.4 Defining &ction
ure does not descri

assigned to it Function definition do

following general structure.

Body of the function

be how the function performs the task
es that. A function definition has the

return_type function_name (data_type var1, data_type var2,.., data_type varN)

Unit5: Functions

ComputerScience -X Unit5: Functions

Body of the function is the set of statements which are executed in the function to
perform the specified task. Just after the function's signature, the set of
statements enclosed inside {} form the body of the function.

Following example defines a function showPangram() that does not take any
input and does not return anything, but displays A quick brown fox jumps over the
lazy dog. on computer screen.

w

void showPap{gram() 6&

{ Ifunction namel
@)

printf(“\nA quick brown fox jumps\"@/er‘ the lazy

dog.\n"); Qj*
A

}

_

J

As the above function does not return anyt@whus return type of the function is
void.

Let's take another example of a function that takes as input two integers and
returns the sum of both integers.o

2 B

<[> EXAMPLE CODE 5.

int add(int x, inty)
\'\\ = |parameters of function‘
{ — |function name
int r‘égt; |return type
'“@ =X+Y;
return result;
N J

Inside the function, return is a keyword that is used to return a value to the calling
function.
Important Note:
A function cannot return more than one values. e.g the following
statement results ina compiler error.
return (4, 5);

ComputerScience -X Unit5: Functions

Important Note:

There may be multiple return statements in a function but as soon as the
first return statement is executed, the function call returns and further
statements in the body of function are not executed.

Using a Function

We need to call a function, so that it performs the programmed task. Following is

N

function_name(valuel, value2,.., valueN{})

the general structure used to make a function call.

Forexample, let's observe the following program. \"Q
or

PG :
void main()
{ %

printf(“Hello from main%@

|showPangram() ;lk——— | £udCtion call|

printf(“Welcome back(®p'main()”);

} N\
Output: ‘\O

Hello from mai:&é%

A quick brown jumps over the lazy dog.

Welcome bac main
- ﬁ () J

AN]
-
We can see that the program starts its execution from main() function. When it

encounters a function call (inside the rectangle), it transfers the control to called
function. After executing the statements of called function, the control is
transferred back to the calling function, i.e. main() in the above example.

The following program inputs two numbers and displays their sum.

The statement inside the rectangle in the following code includes a call to the add

function defined in previous section.

ComputerScience -X Unit5: Functions

<[> EXAMPLE CODE 5.4 ~

void main ()

{
int nl, n2, sum;
scanf ("%d%d", &1, &n2);[function name|
sum =|ad<”j (nl1, n2);|< |function call‘

printf ("Sum is %d", sum); |function arguments|

J 6‘7)
In the function call n7 and n2 are arguments to the fun@ddo discussed in

Example 5.2. .\:\'

Variable sumis declared to store the result retu rﬂ& rom the function add().

The variables passed as arguments are&<ered by the function. The
function makes a copy of the varialeGﬂ all the modifications are made to

that copy only. 5\

In the above example when n rQnZ are passed, the function makes copies

of these variables. The va%a@x isthe copy of n7 and the variable y is the copy
ofn2. A\

A\
Important Note:

The values paé€ed to the function are called arguments, whereas variables
in the function definition that receive these values are called parameters

of the function.

In the above example, values of variables n7 and n2 are arguments to the
function add(), whereas the variables x and y inside function add() are

parameters of the function.

ComputerScience -X

Important Note:

Unit5: Functions

It is not necessary to pass the variables with same names to the function

as the names of the parameters. However, we can also use same names.

Here another important point is that even if we use same names, still the

variables used in the function are a copy of the original variables. This is

illustrated here through following example:

5

#include<stdio.h> O
void fun(int x, inty) .\%'O
%]

{ Q)&
X = 20; &
y = 16; QC)

printf(“Values of x aé\y in fun(): %d %d”, x, y);

} %\OQ
A
QQ’

void main()

{

int x@, y = 20;

funlXs7y) s

printf(“Values of x and y in main(): %d %d”, x, y);
}
Output:

Values of x and y in fun(): 20 10
Values of x and y in main(): 10 20
o

ComputerScience -X Unit5: Functions

Important Note:

Following points must be kept in mind for the arrangement of
functionsin a program.

1- If the definition of called function appears before the definition of
calling function, then function signature is not required.

2- Ifthe definition of called function appears after the definition of calling
function, then function signature of called function must be written

before the definition of calling function.
Both the following code structures are valid. OO
QN
a) int add(int, int); b) int add(ir]*\)int b)
void main() { @

{ 6“' na+b;
printf(”%d ”add(4, 5)); é

} v@id main()
int add(int a, int b) s\Q {
{ printf(”%d *add(4, 5)

return a + b; }
o)

<7> PROGRAMMING TIME 5.1

(/
Proble:@
Write a function isPrime() that takes a number as input and returns 1 if the
input number is prime, otherwise returns 0. Use this function in main().
Program:
#include <stdio.h>
int prime (int n)

{
for (inti=2; 1i<n; i++)
if(n% i==9)
return 0;
return 1;
N)

ComputerScience -X

{
int x;
printf ("Please enter a number: ");
scanf ("%d", &x);
if(prime(x))
printf ("%d is a Prime Number",x);

else ,l
printf ("%d is not a Prime Number",x) O

J ‘OG

Unit5: Functions

(rotdwainy

X
<@"

Problem: @
Write a function which takes a positive@ber asinputand returns the sum
of numbers from 0 to that number.
Program: g\Q
int digitsSum(int n)
{ \
int sum = 0; ’\O
for(int i =&\@<= n; i++)
{ A
@1 =sum+ i;
} AY
n sum;
}
void main()
{
int number;
printf("Please enter a positive number: ");
scanf("%d", &number);
-

ComputerScience -X Unit5: Functions

/ .
if(number >=0)

{

int sum = digitsSum(number);

printf("The sum of numbers upto given number is
%d",sum) ;

}

else
printf("You entered a negative number.");

\} {3& _/

ComputerScience -X Unit5: Functions

.

B A functionis ablock of statements that performs a particular task.

B The functions which are available in C Standard Library are called
built-in functions.

B The functions which are defined by a programmer are called user-
defined functions.

B Some advantages of using functions are: reusability of code,
separation of tasks, reduction in the complexity ofs{LobIem, and
readability of code. @)

B Function signature describes the name, inp Qd output of the
function.

B \We candefine afunction as follows &Q

return_type name (Par‘amet@
{
Body of the Functi@o

}
B The return type of the fur@on is the data type of the value returned
by function. O
B The name of the @tion should berelated toits task.
[Paramete%@ ariables of different data types, that are used to
v

receive the es passed to the function as input.
B Bod function is the set of statements which are executed in the
funetion to fulfil the specified task.

B Calling a function means to transfer the control to that particular
function.

B During the function call, the values passed to the function are called
arguments.

B We can call a user-defined function from another user defined

function, same as we call other functions in main function.
_ Y,

ComputerScience -X Unit5: Functions

Q1 Multiple Choice Questions

1) Functions could be built-in or

a) admin defined b) serverdefined c)userdefined d)Bothaandc
2) The functions which are available in C Standard Library are called

a) user-defined b) built-in C) recursive d) repetitive

3) The values passed to a function are called) \&

a) bodies b) returntypes c)arrays @rguments
4) charcd() {return'a'}. Inthis function “char” is .

a) body b) return type c) array ®+ d) arguments

5) The advantages of using functions are
a) readability b) reusability d %debugging d) all

6) If there are three return statements in the function body, of
them will be executed. S\
a)one b) two O c) three d) firstand last

7) Readability helpsto the code.
a) understand b Ify c) debug d) all
\ré‘h

8) s to transfer the control to another function.
a) calling ~ b) defining ¢) re-writing d) including
Q2 Define t owing.
1) Functl’og 2) Built-in functions 3) Functions Parameters
4) Reusability 5) Calling a function

Q3 Briefly answer the following questions.

1) What is the difference between arguments and parameters? Give an
example.

2) Enlist the parts of a function definition.

3) Is it necessary to use compatible data types in function definition and
function call? Justify your answer with an example.

4) Describe the advantages of using functions.

5) What do you know about the return keyword?

ComputerScience -X Unit5: Functions

Q4 Identify the errorsin the following code segments.
a) void sum (inta, intb)

{
returna+b;

}

b) void message ();

{
printf (“Hope you are fine :)”); \ |
return 23; O

}

¢) intmax (inta; intb) .\S'Q
{ &Q)
if (a>b) @

return a; &

returnb; O
} R

d) int product (intnl, 1®n2)
return n1*n2
e) int totalDlglt Qt X)
Cee®
int co
-Foé@nt1=x; i>»=1,i=1i/10)

$ count++;
eturn count

}s

ComputerScience -X Unit5: Functions

Q5 Write down output of the following code segments.

a)

b)

<)

int xyz (int n)

{
returnn + n;
}
int main()
{
int p = xyx(5);
p=xyz(p); O(SL~
printf (“%d “,p); \Q
) 4
void abc (int a, int b, int c) &@

{
int sum=a+b+c; &@
) O
int main() &Q
O

{
intx=4,y =.7é§23, suml = 9;

abc (x, vy, z %\
Pr‘inth d%d” x, y ,2);

}
int aa (iht)x)
e\

intp=x/10;

X++;
p=p+(p*x);
return p;
}
int main()
{
printf (“We got %d “, aa(aa(23)));
}

—

ComputerScience -X Unit5: Functions

d) float f3(int ni1, int n2)

{
nl =nl+ n2;
n2 =n2 - nl;
return 9;

}

int main()

{ N
printf (“%f\n”, £3(3, 2)); @)
printf (“%f\n”, f3(10, 6)); ‘QO

} @._

ComputerScience -X Unit5: Functions

Programming Exercises

Exercise 1

Write a function int square(int x); to calculate the square of an integer x.
Exercise 2

Write a function int power(int x, int y); to calculate and return x".
Exercise 3

Write a function to calculate factorial of a number. \ |
Exercise 4 @)
Write a function which takes values for three angles riangle and prints

whether the given values make a valid triangle or not. ‘(‘a-hd triangle is the one,
where the sum of three angles is equal to 180.

Exercise 5 &
Write a function which takes the amount interest percentage and return

the interest amount. &Q

Exercise 6
Write a function which takes a nu@ber as input and displays its digits with spaces

in between.
K%

Exercise 7
Write a function to pﬂ'ﬂkhe table of anumber.

$®

ComputerScience -X

Glossary

\n: It specifies the movement of cursor to
start of the nextline.

\t: It specifies the movement of cursor to
the next tab stop horizontally. A tab stop is
collection of 8 spaces.

Arguments: The values passed to the
function during the function call.
Arithmetic operators: These are used to
perform arithmetic operations on data.
Arithmetic operatorsare +, -, *, /, %.

Array Initialization: Assigning values to
an array for the first time. An array can be
initialized at the time of its declaration, or
later.

Array Size: The maximum number of
elements that the array can hold.

Array: A data structure that can hold
multiple values of same data type at
consecutive locations inside t
computer's memory.

Assignment operator: It is used to@sign
a value to a variable, or assign‘i lue of
variable to anothervariable.

Basic operators: These i

operators, assignmentﬁ&
operators, and logi
Binary oper
operands.

Body of the function: It is the set of
statements which are executed in the
function to fulfil the specified task.

Calling a function: Transferring the
control to the function.

Built-in Functions: The functions which
are available in C Standard Library.
Character: A data type used to store
characters only. Its size is 1 byte.
Comments: The statements which are
ignored by the compiler and are not

arithmetic

rator, relational
perators.

They require two

Glossary

executed.

Compiler: A software that is
responsible for conversion of a
computer program written in some
high level programming language to
machine language code

Computer Program: A series of
instructions written by human to perform
a particular task.

Computer Programmi@?§he process of
feeding or storin instructions of a

computer progr he computer.
Condition: ould be any valid
expressi inCluding the arithmetic
expre s, the relational expressions,
logical ressions, or a combination of
tiese.

onditional statements: The statements
hich help us to decide which statements
should be executed next, on the basis of
conditions.
Constants: Constants are the values that
cannot be changed by the program.
Control Statements: They control the
flow of program execution.
Data structure: A container to store
collection of data items in a specific layout.
Data Type: It tells which type of value can
be stored in avariable.
Escape sequence: It forces printf to
escape from its normal behavior. It is the
combination of escape character(\) and a
character associated with special
functionality.
Floating Point: A data type used to store a
real (number with floating point) number
up to six digits of precision. Its size is 4
bytes.
Format Specifiers: These are used to

ComputerScience -X

Glossary

specify format of data type during input
and output operations.

Function signature: It describes the
inputs and output of the function.
Function: A block of statements that
performs a particular task.

Getch() function: It is used to read a
character from user. This function accepts
characters only. The character entered by
user does not get displayed on screen.
Header Section: The section in which
header files are included.

Identifier: The name used to refer a
variable.

If statement: It executes the code under
condition if the specified condition turns
out to be true, otherwise this code does
not get executed.

If-else statement: It executes the set
statements under if statement if
condition is true and executes the@&t of
statements under else other\le

Index: It is used to access egﬁints of an
array. Variables can aI ed as array
indices.

Integer data type: data type used to
storeintegerval @ts sizeis 4 bytes.
Integrated elopment Environment:
A software that provides a programming
environment to facilitate programmers in
writing and executing computer
programs.

Keywords: A list of pre-defined words in a
programming language.

Logical AND operator: It returns true
when the result of expressions on both
sidesistrue.

Logical NOT operator: It returns true if
the expression is false and vice versa.

Glossary

Logical operators: They performs

operation on Boolean expressions and

returns a Booleanvalue as aresult.

Logical OR operator: It returns true when

either of the two expressionsis true.

Loop Structure: It is used to repeat a set of

statements.

Main function: It is the starting point of

execution.

Modulus operator: A@ ary operator

which performs di of left operand to

the right op X{% and returns the

remainderval "&ﬂerdlvmon

Nested s n structures: Conditional

state within conditional statements.

Ne oops: Loops inside loops are
sted loops.

garameters: The variables of different

ata types, that are used to receive the
values passed to the function as input.
Precedence: It tells which operation
should be performed first.
Printf: A built-in function used to display
formatted output on screen.
Programmer: The person who knows
how to write a computer program
correctly.
Programming Environment: A collection
of all necessary tools for programming.
Programming languages: The special
programming languages in which
programmers write programs.
Relational operators: They compare two
values to determine the relationship
between them.
Return type: It is the data type of the value
returned by function.
Scanf: scanf is a built-in function in C
language that takes input from user into

ComputerScience -X

Glossary

the variables.

Sequential control: All the statements are
executed in the given sequence.

Selection Statements: They help us to
decide which statements should be
executed next, on the basis of conditions.
Short circuiting: Deducing the result of
an operation without working on the
whole expression.

Statement terminator: An identifier for
compiler which is used to identify end of a
statement. In C language semi colon () is
used as statement terminator.

String: A collection of characters.

Syntax: Each programming language has
some primitive building blocks and
provides some rules in order to write an
accurate program. This set of rules is
known as syntax of the language.

Ternary operators: They require th@
operands.

Text Editor: A software tH\QIIows
programmers to write and edit.computer

programs. @
Unary operators: Th;/ require one

operand only.

User-defined @tions: The functions
which are defi y a programmer.
Variable Declaration: Specifying the data
type and a valid name for the variable.
Variable Initialization: Assigning value to
variable for the first time.

Variables: Variable is a name given to a
memory location as the data is physically
stored inside the computer’'s memory.

Glossary

ComputerScience -X Glossary
Index

A Function Signature, 103 Parameters, 103

Addition Operator, 35 Function, 102 Precedence, 42

AND operator, 39 G Printf function, 23

Arguments, 107 Getch(), 28 Programmer, 2

Arithmetic Operators, 32 H Programming

Array Declaration, 79 Header files, 6 Environment, 2

Array Initialization, 79 Header Section, 6 Programming Languages,

Array Size, 79 I 2

Array, 78 I/O functions, 23 R

Assignment operator, 31 Identifier, 11 Real Con@&,m

Associated Code, 54 If statements, 53 Relatio? perators, 37

B If-else statements, 59 Re Words, 6

Binary Operator, 41 Include, 6 Value, 103

Body of Main Function, 7 Index, 80 &@éusability, 103

Built-in Function, 102 Integer Constant, 10 S

C Integer, 12 Scanf, 26

Character Constant, 10 Integrated Deve ,ﬁsnt Signed int, 12

Character Set, 9 Environment, @ Single-line Comments, 8

Character, 12 K Q Statement Terminator, 29

Comments, 8 Keyword%\ Subtraction Operator, 36

Compiler, 5 L Syntax Error, 5

Computer Program, 2 Lin tion, 6 Syntax, 5

Computer programming, 2 | Operators, 39 T

Condition, 53 p Structure, 83 Tab (\t), 30

Conio.h, 28 QM Text Editor, 4

Console, 5 Main Function, 7 Ternary Operator, 41

Constants, 10 \Q Main section, 7)

Control State @,52 Modulus Operator, 36 Unary operator, 41

D Multi-line Comments, 8 Unsigned Int, 12

Data Structure, 78 Multiplication Operator, 34 User Defined Function, 102

Data type, 11 N \'}

Division Operator, 32 Nested Loops, 87 Variable Declaration, 13

E Nested Selection Variable Initialization, 14

Escape Character, 29 Structures, 64 Variables, 11

Escape Sequence, 29 New Line (\n), 30

F NOT Operator, 40

Floating Point, 12 (o)

Format specifier, 24 Operator, 31

Function Call, 106 OR operator, 40

Function Definition, 104 P

ComputerScience -X Glossary
Answers
Chapter 1
Q1 Multiple Choice Questions
1.c 6. cC
2.a 7.b
3.b 8.b
4.b 9.b
5.a 10. c 6&
Q2 True/False \,\Q

{c
Q3 Match the CquQ@

&

4. c

| Q
T \O

5.9
6.b
7.f
8.e

ComputerScience -X Glossary

Answers

Chapter 2
Q1 Multiple Choice Questions

1.d 2.c 3.c 4.b 5.b 6.d 7.b 8 b 9.c 10.d

Q2 True/False

1. F
2. T

N

4. F O
5.F .\S'Q
Q3 Output &Q)
. 079
o N
O
nnn s\Q
/n/n nn/ (\O
é\O
W\
QQ)

Q1 MuItipI@Qe Questions

o w
= U1 © ~+ >

Chapter 3

1.a 2.d 3.c 4.a 5.b 6.d 7.a 8.c

Q5 Outputs
1. a=17,b=10
Hope for the Best
6<9and N=N
a=50176, b=224, c=22, d=484
x=16
x=16,y=8,z=9

oA wN

ComputerScience -X

Glossary

Answers

Chapter 4

Q1 Multiple Choice Questions
1.c 2.a 3.a 4.a 5b 6.d 7.d
Q5 Outputs

1.
2.
3.

1.c

Q1 Multiple &Questlons
. 3. 4.b

Sum is 25
j =50
j=49
j =48

|4= 50 ®+

36 \
(G)i)ooooo QQ&
5\

0.000000

0.000000 (\O
2.640000 ’\O
5.520000 %

11.959999 QQ)

Chapter 5

5.d 6.a 7.d

Q5 Outputs

1.

20

2. 4723
3.
4. 0.000000

We got 260

0.000000

8.a

